2023年山西省晋中市平遥县中考一模数学试卷(含答案)
展开
这是一份2023年山西省晋中市平遥县中考一模数学试卷(含答案),共11页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
山西省2023年中考总复习预测模拟卷数学(六)注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共6页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号写在本试卷及答题卡相应的位置.3.请把答案全部填写在答题卡上,答在本试卷上无效.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.计算的结果是( )A. B. C. D.62.中国地铁是指中国建设和运营中的城市轨道交通.下列城市地铁图标,其文字上方的图案是中心对称图形的是( )A. B. C. D.3.黄河之水,连天入海,浩荡奔涌,在我国经济社会发展和生态安全方面具有十分重要的地位,是我国水电资源开发的富矿.黄河流域水力资源理论蕴藏量4331.2万千瓦.该数据可用科学记数法表示为( )A.千瓦 B.千瓦C.千瓦 D.千瓦4.在求解方程时,在方程两边同乘,把原方程化为:,这一变形过程体现的数学思想主要是( )A.类比思想 B.函数思想 C.方程思想 D.转化思想5.下列运算正确的是( )A. B.C. D.6.将矩形 绕点旋转到如图位置,若,则的度数为( )A. B. C. D.7.用配方法解方程时,配方后正确的是( )A. B. C. D.8.点,,,在反比例函数图像上,则,,,中最小的是( )A. B. C. D.9.今年是我国现行宪法公布施行40周年.为贯彻党的二十大精神,强化宪法意识,弘扬宪法精神,推动宪法实施,某学校开展法律知识竞赛活动,全校一共100名学生参与其中,得分情况如下表,则分数的中位数和众数分别是( )分数(分)60708090100人数822203322A.80分,90分 B.90分,100分 C.85分,90分 D.90分,90分10.如图,以直角顶点为圆心、以一定的长为半径画弧,恰好与边相切,分别交,于点,,已知,则图中阴影部分的面积是( )A. B. C. D.第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:_________.12.若的整数部分为,小数部分为,则代数式的值是_________.13.已知菱形的一边长为,其一条对角线的长为,则该菱形的面积为_________.14.小良帮助爸爸妈妈一同在家装市场选购新家的地板样式,期间被一款如图,类似鱼骨的拼接方式所吸引.通过和手工师傅交流,与自己实际动手操作,她发现图中所有矩形地板是全等的,并且符合黄金分割比例.比如点是的黄金分割点,即.延长与相交于点,则_________.(精确到0.001)15.如图,在中,,,点为斜边的中点,点在上,,现将线段绕点旋转,点的对应点为点,连接,.当时,的长为_________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)计算:;(2)解不等式组:17.(本题8分)如图,在中,.(1)利用尺规:作的外接圆;作的角平分线交于点,连接;(不写作法,保留作图痕迹)(2)若,,求的长.18.(本题9分)为优化全民健身组织体系,强化全民健身政策激励,我省推广并贯彻实施《山西省构建更高水平的全民健身公共服务体系行动方案》.某社区积极响应号召、为构建15分钟健身圈,购买了甲、乙两种健身器材,已知购买甲种器材共花费82000元,购买乙种器材共花费54000元,并且甲种健身器材的单价是乙种健身器材的2倍,甲种器材比乙种器材少 13 件.(1)甲、乙两种健身器材一共购买了多少件?(2)相邻社区决定效仿该社区,计划购进甲、乙两种健身器材共 120件,且费用不超过 150 000 元,请问:相邻社区甲种健身器材最多能购买多少件?19.(本题6分)公司生产、两种型号的洗碗机,为了解它们的用水量,工作人员从某月生产的、型洗碗机中各随机抽取10台,保证洗碗数、脏污度等相同的情况下,记录下它们的用水量的数据(单位:),并进行整理、描述和分析(用水量用表示,共分为三个等级:合格,良好,优秀),下面给出了部分信息:10台型洗碗机的用水量:10,13,13,13,10,16,15,8,11,9.10台型洗碗机中“良好”等级包含的所有数据为:12,11,11,12,14.抽取的、型洗碗机用水量统计表型号平均数中位数众数方差“优秀”等级所占百分百11.5137.92420%12.51010.2530%根据以上信息,解答下列问题:(1)填空:_________,_________,_________;(2)这个月公司预计销售型洗碗机1500台,估计该月型洗碗机“合格”等级的台数;(3)根据以上数据,请你为该公司接下来的生产计划提出一条建议,并说明理由.20.(本题7分)阅读与思考.请仔细阅读并完成相应的任务.利用我们所学习的三角函数的相关知识可以解决许多关于三角形边长、角度、面积等问题.如图,在锐角中,,,的对边分别是,,过点作于点,则,即,于是.在中,,在中,,,整理得.任务:(1)__________,__________;(2)已知中,,,所对边分别是,,,,,,求.21.(本题8分)预防青少年近视,从一点一滴做起,为提高同学们保护视力的意识,某学校开展了一系列爱眼护眼宣传活动.某数学小组从网课期间利用笔记本电脑学习的同学处得到启发,准备探究笔记本电脑屏幕与键盘的夹角以及屏幕上方边界离桌面的距离与视力的关系.如图,当屏幕与键盘所成夹角时,上方边界处离桌面的高度的长为,通过发放调查问卷统计的数据显示,多数同学表示此角度不理想.通过不断调整与问卷调查分析,发现多数同学认为当夹角时,感觉比较适宜.求此时上方边界处离桌面的高度的长.(结果精确到;参考数据:,,,)22.(本题13分)综合与实践.问题情境:如图,和的顶点重合,,,,.(1)猜想发现:如图1,当点,分别在,上时,可以得出结论:________,直线与直线的位置关系是________;(2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接,,它们的延长线交于点,当时,求的值.23.(本题14分)综合与探究.如图1,在平面直角坐标系中,已知二次函数的图象与轴交于,两点(点在点的左侧),与轴交于点,连接.(1)求,,三点的坐标,并直接写出直线的函数表达式;(2)点是二次函数图象上的一个动点,请问是否存在点使?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,作出该二次函数图象的对称轴直线,交轴于点.若点是二次函数图象上一动点,且点始终位于轴上方,作直线,,分别交于点,,在点的运动过程中,的值是否为定值?若是,请直接写出该定值;若不是,请说明理由. 山西省2023年中考总复习预测模拟卷参考答案数学(六)一、选择题1.B 2.C 3.B 4.D 5.B 6.A 7.D 8.C 9.C 10.A二、填空题11. 12.1 13.96 14.0.618 15.或三、解答题16.解:(1)原式(2)解不等式组:解不等式①,得:,解不等式②,得:,原不等式组的解集是.17.解:(1)如图,的外接圆即为所求.(2)连接.,是的直径,,,,平分,,,,.18.解:(1)设一件乙健身器材的单价为元,则一件甲健身器材的单价为元.由题意可得,解得,经检验,是原分式方程的解且满足题意(件).(件),(件).答:甲,乙两种健身器材一共购买了95件.(2)设相邻社区甲种健身器材购买件,由题意可得,解得.答:相邻社区甲种健身器材最多能购买30件.19.解:(1)11.8;11.5;20(2)(台),答:该月型洗碗机“合格”等级的台数为300台.(3)可以加大型洗碗机的生产量,因为其平均用水量较低,同时方差较小,说明用水量比较稳定.(答案不唯一)20.;.(2), ,即,解得,(舍去),.21.解:,,,,.在中,,,解得.由题意得:,,,在中,,此时上方边界处离桌面的高度的长约.22.(1) 垂直(2)结论成立.证明:,,,,,,,,,,;,.(3)如图3,过点作于点,设交于点,过点作于点,,,,,,,,当时,四边形是矩形,, 设,则,,,,,,,23.解:(1)当时,即,解得,.图象与轴交于点,,当时,图象与轴交于点直线的函数表达式为(2)存在,理由如下:当点在上方时,,,即轴,点与点关于抛物线的对称轴对称 抛物线的对称轴为直线,当点在下方时,设交轴于点,则,.,.在中,,,解得:,设直线的解析式为,则解得:直线的解析式为联立,得解得:(舍去).综上所述,点的坐标为或,(3)的值为定值.
相关试卷
这是一份2023年山西省晋中市平遥县中考数学二模试卷+,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山西省晋中市平遥县中考数学二模试卷+,共28页。
这是一份2023年山西省晋中市平遥县中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。