- 第八章 认识概率【复习课件】——2022-2023学年苏科版数学八年级下册单元综合复习 课件 6 次下载
- 第八章 认识概率 【基础卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版) 试卷 6 次下载
- 第九章 中心对称图形—平行四边形-【复习课件】2022-2023学年苏科版数学八年级下册单元综合复习 课件 7 次下载
- 第九章 中心对称图形—平行四边形【基础卷】- 2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版) 试卷 7 次下载
- 第九章 中心对称图形—平行四边形 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版) 试卷 11 次下载
第八章 认识概率 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版)
展开第八章 认识概率(提优)
一.选择题(共10小题)
1.从甲,乙,丙三人中任选两名代表,甲被选中的可能性是( )
A. B. C. D.
2.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入6个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中66次摸到黑球,估计盒中大约有白球( )
A.28个 B.29个 C.30个 D.32个
3.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个面积为20cm2的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
A.6cm2 B.7cm2 C.8 cm2 D.9cm2
4.在一个不透明的布袋中,红色、黑色、白色的小球共有50个,除颜色外其他完全相同,乐乐通过多次摸球试验后发现,摸到红色球、黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是( )
A.5个 B.10个 C.15个 D.20个
5.某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最优可能的是( )
A.暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球
B.掷一枚硬币,正面朝上
C.掷一个质地均匀的正六面骰子,向上一面的点数是2
D.从一副扑克牌中任意抽取1张,这张牌是“红心”
6.某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是( )
A.从标有1,2,3,4,5,6的六张卡片中任抽一张,抽到的卡片上标有奇数
B.扔一枚面额一元的硬币,正面朝上
C.在“石头、剪刀、布”的游戏中,某人随机出的是“剪刀”
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
7.育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数 | 100 | 300 | 800 | 1000 | 2000 | 3000 |
发芽粒数 | 96 | 287 | 770 | 958 | 1923 | a |
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
8.在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.6左右,则袋子中红球的个数最有可能是( )
A.5 B.8 C.12 D.15
9.一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
10.在不透明布袋中装有除颜色外完全相同的红、白玻璃球,已知白球有60个.同学们通过多次试验后发现摸到红色球的频率稳定在0.25左右,则袋中红球个数可能为( )
A.15 B.20 C.25 D.30
二.填空题(共10小题)
11.在一个不透明的布袋中装有100个红、蓝两种颜色的球,除颜色外其他都相同,小明通过多次摸球试验后发现,摸到红球的频率稳定在0.3左右,则布袋中蓝球可能有 个.
12.一个不透明的口袋中有红球和黑球共50个,这些球除颜色外都相同.小明通过大量的摸球试验(每次将球搅匀后,任意摸出一个球,记下颜色后放回),发现摸到黑球的频率在0.4附近摆动,据此可以估计黑球为 个.
13.在一个不透明的布袋中装有20个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.20左右,则布袋中白球可能有 .
14.某篮球运动员进行定点投篮训练,其成绩如表:
投篮次数 | 10 | 100 | 10000 |
投中次数 | 9 | 89 | 9012 |
则这名运动员定点投篮一次,投中的概率约是 (精确到0.1).
15.有一纸箱装有除颜色外都相同的散装塑料球共100个,小明将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.4,由此可以估计纸箱内红球的个数约是 个.
16.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:
实验次数 | 100 | 200 | 300 | 400 |
摸出红球 | 78 | 161 | 238 | 321 |
则袋中原有红色小球的个数约为 个.
17.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中红球12个.每次先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子里,通过大量重复摸球试验后发现,摸出红球的频率稳定在0.6左右,则估计盒子里小球的个数为 .
18.“打开电视,正在播放《新闻联播》”是 事件.
19.某种小麦播种的发芽概率约是95%,1株麦芽长成麦苗的概率约是90%,一块试验田的麦苗数是8550株,该麦种的一万粒质量为350克,则播种这块试验田需麦种约为 克.
20.为了打赢脱贫攻坚战,某村计划将该村的特产柑橘运到A地进行销售.由于受道路条件的限制,需要先将柑橘由公路运到火车站,再由铁路运到A地.村里负责销售的人员从该村运到火车站的所有柑橘中随机抽取若干柑橘,进行了“柑橘完好率”统计,获得的数据记录如下表:
柑橘总质量n/kg | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
完好柑橘质量m/kg | 92.40 | 138.45 | 183.80 | 229.50 | 276.30 | 322.70 | 367.20 | 414.45 | 459.50 |
柑橘完好的频率 | 0.924 | 0.923 | 0.919 | 0.918 | 0.921 | 0.922 | 0.918 | 0.921 | 0.919 |
①估计从该村运到火车站,取出一个柑橘,柑橘完好的概率为 (结果保留小数点后三位);
②若从该村运到A地柑橘完好的概率为0.880,估计从火车站运到A地后,取出一个柑橘,柑橘完好的概率为 .
三.解答题(共10小题)
21.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复上述过程,下表是活动进行中的一组统计数据:
摸球的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
摸到白球的次数m | 58 | 96 | 116 | 295 | 484 | 601 |
摸到白球的频率 |
| 0.64 | 0.58 |
| 0.605 | 0.601 |
(1)请将表中的数据补充完整,
(2)请估计:当n很大时,摸到白球的概率约是 .(精确到0.1)
22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).
参与度 | 0.2~0.4 | 0.4~0.6 | 0.6~0.8 | 0.8~1 |
录播(人数) | 4 | 16 | 12 | 8 |
直播(人数) | 2 | 10 | 12 | 16 |
(1)你认为哪种教学方式学生的参与度更高?简要说明理由.
(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?
(3)该校共有1000名学生,选择“录播”和“直播”的人数之比为1:4,估计参与度在0.4以下的共有多少人?
23.某玩具公司承接了第19届杭州亚运会吉祥物公仔的生产任务,现对一批公仔进行抽检,其结果统计如下,请根据表中数据,回答问题:
抽取的公仔数n | 10 | 100 | 1000 | 2000 | 3000 | 5000 |
优等品的频数m | 9 | 96 | 951 | 1900 | 2856 | 4750 |
优等品的频率 | 0.9 | 0.96 | a | 0.95 | 0.952 | b |
(1)a= ;b= .
(2)从这批公仔中任意抽取1只公仔是优等品的概率的估计值是 .(精确到0.01)
(3)若该公司这一批次生产了10000只公仔,请问这批公仔中优等品大约是多少只?
24.某种油菜籽在相同条件下的发芽试验的结果如下:
每批粒数n | 100 | 150 | 200 | 500 | 800 | 1000 |
发芽的粒数m | 65 | 111 | 136 | 345 | 560 | 700 |
发芽的频率 | 0.65 | 0.74 | 0.68 | 0.69 | a | b |
(1)上表中a= ,b= ;
(2)请估计,当n很大时,频率将会接近 ;
(3)这种油菜籽发芽的概率的估计值是多少?请简要说明理由;
(4)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽估计可得到油菜秧苗多少棵?
25.一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,将袋中的球充分摇匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到黑球的频率逐渐稳定在.
(1)估计摸到黑球的概率是 ;
(2)如果袋中原有黑球15个,估计原口袋中共有几个球?
(3)在(2)的条件下,又放入n个黑球,再经很多次实验发现摸到黑球的频率逐渐稳定在,估计n的值.
26.在一个不透明的口袋里装有若干个红球和白球(这些球除颜色外都相同),八(1)班学生在数学实验室做摸球试验:搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中、不断重复,如表是这次活动统计汇总获得的数据统计表:
摸球的次数s | 150 | 300 | 600 | 1000 | 1200 | 1500 |
摸到白球的频数n | 51 | a | 237 | 401 | 480 | 603 |
摸到白球的频率 | 0.340 | 0.390 | 0.395 | 0.401 | 0.400 | b |
(1)按表格数据,表中的a= ;b= ;
(2)请估计:当次数s很大时,摸到白球的频率将会在某一个常数附近摆动,这个常数是 (保留一个小数位);
(3)将球搅匀,从口袋中任意摸出1个球,摸到白球和摸到红球的可能性相同吗?为什么?
27.用一副扑克牌中的10张设计一个翻牌游戏,要求同时满足以下三个条件;
(1)翻出“黑桃”和“梅花”的可能性相同;
(2)翻出“方块”的可能性比翻出“梅花”的可能性小;
(3)翻出黑颜色的牌的可能性比翻出红颜色牌的可能性小;
解:我设计的方案如下:
“红桃” 张,“黑桃” 张,“方块” 张,“梅花” 张
28.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球试验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:
摸球的次数s | 150 | 300 | 600 | 900 | 1200 | 1500 |
摸到白球的频数n | 63 | a | 247 | 365 | 484 | 606 |
摸到白球的频率 | 0.420 | 0.410 | 0.412 | 0.406 | 0.403 | b |
(1)按表格数据格式,表中的a= ;b= ;
(2)请估计:当次数s很大时,摸到白球的频率将会接近 (精确到0.1);
(3)请推算:摸到红球的概率是 (精确到0.1);
(4)试估算:这一个不透明的口袋中红球有 只.
29.小明做投掷骰子(质地均匀的正方体)实验,共做了100次实验,实验的结果如下:
朝上的点数 | 1 | 2 | 3 | 4 | 5 | 6 |
出现的次数 | 14 | 15 | 23 | 16 | 20 | 12 |
(1)计算“4点朝上”的频率.
(2)小明说:“根据实验,一次实验中出现3点朝上的概率最大”.他的说法正确吗?为什么?
(3)小明投掷一枚骰子,计算投掷点数小于3的概率.
30.阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.
(3)请直接写出题2的结果.
第十章 分式 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版): 这是一份第十章 分式 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版),文件包含第十章分式培优卷2022-2023学年苏科版数学八年级下册单元综合复习解析版docx、第十章分式培优卷2022-2023学年苏科版数学八年级下册单元综合复习原卷版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
第八章 认识概率 【基础卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版): 这是一份第八章 认识概率 【基础卷】——2022-2023学年苏科版数学八年级下册单元综合复习(原卷版+解析版),文件包含第八章认识概率基础卷2022-2023学年苏科版数学八年级下册单元综合复习解析版docx、第八章认识概率基础卷2022-2023学年苏科版数学八年级下册单元综合复习原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
第七章 数据的收集、整理、描述 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(苏科版)(原卷版+解析版): 这是一份第七章 数据的收集、整理、描述 【培优卷】——2022-2023学年苏科版数学八年级下册单元综合复习(苏科版)(原卷版+解析版),文件包含第七章数据的收集整理描述培优卷2022-2023学年苏科版数学八年级下册单元综合复习解析版docx、第七章数据的收集整理描述培优卷2022-2023学年苏科版数学八年级下册单元综合复习原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。