中考数学二轮专题复习:相似三角形题型训练 (含答案)
展开这是一份中考数学二轮专题复习:相似三角形题型训练 (含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
中考数学 相似三角形题型训练
一、选择题
1.如图,在方格纸中,将图①中的三角形甲平移到图②
中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( )
A.先向下平移3格,再向右平移1格
B.先向下平移2格,再向右平移1格
C.先向下平移2格,再向右平移2格
D.先向下平移3格,再向右平移2格
2.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值( )
A.只有1个 B.可以有2个
C.有2个以上但有限 D.有无数个
3.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD的中点,连接OM、ON、MN,则下列叙述正确的是( )
A.△AOM和△AON都是等边三角形
B.四边形MBON和四边形MODN都是菱形
C.四边形AMON与四边形ABCD是位似图形
D.四边形MBCO和四边形NDCO都是等腰梯形
4.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为( )
A.12.36cm B.13.6cm C.32.36cm D.7.64cm
5.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B时,要使眼睛O、准星A、目标B在同一条直线上,如图所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米,AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 ( )
A.3米 B.0.3米 C.0.03米 D.0.2米
6.如图,小东用长为3.2m的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m、与旗杆相距22m,则旗杆的高为( )
A.12m B.10m C.8m D.7m
7.在和中,,如果的周长是16,面积是12,那么的周长、面积依次为( )
A.8,3 B.8,6 C.4,3 D.4,6
二、填空题
1.在平面直角坐标系中,顶点的坐标为,若以原点O为位似中心,画的位似图形,使与的相似比等于,则点的坐标为 .
2.如图,中,直线交于点交于点交于点若则 .
3.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC的面积是 .
4.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是 .
5.如图,两处被池塘隔开,为了测量两处的距离,在外选一适当的点,连接,并分别取线段的中点,测得=20m,则=__________m.
三、解答题
1.如图,在ABC中,已知DE∥BC,AD=4,DB=8,DE=3,
(1)求的值,(2)求BC的长
2.如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.
3.如图1,在中,,于点,点是边上一点,连接交于,交边于点.
(1)求证:;
(2)当为边中点,时,如图2,求的值;
(3)当为边中点,时,请直接写出的值.
4.如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连结FG,如果α=45°,AB=,AF=3,求FG的长.
5.如图,⊙中,弦相交于的中点,连接并延长至点,使,连接BC、.
(1)求证:;
(2)当时,求的值
6.如图,梯形ABCD中,,点在上,连与的延长线交于点G.
(1)求证:;
(2)当点F是BC的中点时,过F作交于点,若,求的长.
【参考答案】
选择题
- D
- B
- C
- A
- B
- A
- A
填空题
- (4,6)
- 144
- 或2;
- 40
解答题
1. 解:(1)∵
∴
∴
(2)∵,所以
∴
∵
∴
∴
2. △ABE 与△ADC相似.理由如下:
在△ABE与△ADC中
∵AE是⊙O的直径, ∴∠ABE=90o,
∵AD是△ABC的边BC上的高,
∴∠ADC=90o, ∴∠ABE=∠ADC.
又∵同弧所对的圆周角相等,
∴∠BEA=∠DCA.
∴△ABE ~△ADC.
3. 解:(1),.
.
,
,.
;
(2)解法一:作,交的延长线于.
,是边的中点,.
由(1)有,,
.
,,
又,.
,.
,,,
,.
解法二:于,
..
设,则,
.
,
.
由(1)知,设,,.
在中,.
..
(3).
4. (1)证:△AMF∽△BGM,△DMG∽△DBM,△EMF∽△EAM(写出两对即可)以下证明△AMF∽△BGM.
∵∠AFM=∠DME+∠E=∠A+∠E=∠BMG,∠A=∠B
∴△AMF∽△BGM.
(2)解:当α=45°时,可得AC⊥BC且AC=BC
∵M为AB的中点,∴AM=BM=
又∵AMF∽△BGM,∴
∴
又,∴,
∴
5. (1)证明:
是的中位线,
又
(2)解:由(1)知,
又
.
6. (1)证明:∵梯形,,
∴,
∴.
(2) 由(1),
又是的中点,
∴,
∴
又∵,,
∴,得.
∴,
∴.
相关试卷
这是一份中考数学二轮复习专题训练题型07 动态问题试题(教师版),共49页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学二轮复习专题训练题型06 分类讨论试题 (教师版),共46页。试卷主要包含了二次函数y=x2+等内容,欢迎下载使用。
这是一份中考数学二轮复习专题训练题型02 规律探索类试题(教师版),共29页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。