所属成套资源:中考数学二轮复习考点精讲专题 (教师版)
中考数学二轮复习考点精讲专题39 几何最值之阿氏圆问题(教师版)
展开
这是一份中考数学二轮复习考点精讲专题39 几何最值之阿氏圆问题(教师版),共19页。
问题分析:“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”。 模型展示:如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P构成的图形为圆.(1)角平分线定理:如图,在△ABC中,AD是∠BAC的角平分线,则.证明:,,即(2)外角平分线定理:如图,在△ABC中,外角CAE的角平分线AD交BC的延长线于点D,则.证明:在BA延长线上取点E使得AE=AC,连接BD,则△ACD≌△AED(SAS),CD=ED且AD平分∠BDE,则,即.接下来开始证明步骤:如图,PA:PB=k,作∠APB的角平分线交AB于M点,根据角平分线定理,,故M点为定点,即∠APB的角平分线交AB于定点;作∠APB外角平分线交直线AB于N点,根据外角平分线定理,,故N点为定点,即∠APB外角平分线交直线AB于定点;又∠MPN=90°,定边对定角,故P点轨迹是以MN为直径的圆.模型最值技巧:计算的最小值时,利用两边成比例且夹角相等构造母子型相似三角形问题:在圆上找一点P使得的值最小,解决步骤具体如下:① 如图,将系数不为1的线段两端点与圆心相连即OP,OB② 计算出这两条线段的长度比③ 在OB上取一点C,使得,即构造△POM∽△BOP,则,④ 则,当A、P、C三点共线时可得最小值 【例1】如图,已知正方ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,则的最大值为_______.【分析】当P点运动到BC边上时,此时PC=2,根据题意要求构造,在BC上取M使得此时PM=1,则在点P运动的任意时刻,均有PM=,从而将问题转化为求PD-PM的最大值.连接PD,对于△PDM,PD-PM<DM,故当D、M、P共线时,PD-PM=DM为最大值. 【详解】解:(1)如图1中,在BC上取一点G,使得BG=1.
∵
∴ ∵∠PBG=∠PBC,
∴△PBG∽△CBP,
∴
∴
∵DP+PG≥DG,
∴当D、G、P共线时,的值最小,最小值为DG==5.
∵=PD-PG≤DG,
当点P在DG的延长线上时,的值最大(如图2中),最大值为DG=5.
【例2】如图,菱形的边长为2,锐角大小为,与相切于点E,在上任取一点P,则的最小值为___________.【答案】.【详解】解:在AD上截取AH=1.5,连接PH、AE,过点B作BF⊥DA延长线,垂足为F,∵AB=2,∠ABC=60°,∴BE=AF=1,AE=BF=,∴,∵∠PAD =∠PAH,∴△ADP∽△APH,∴,∴PH=,当B、P、H共线时,的最小,最小值为BH长,BH=;故答案为:.【例3】如图,在中,∠C=90°,CA=3,CB=4.的半径为2,点P是上一动点,则的最小值______________的最小值_______【答案】 【详解】①在BC上取点D,使CD=BC=1,连接AD,PD,PC,由题意知:PC=2,∵,∠PCD=∠BCP,∴,∴,且,∴,∴的最小值为,故答案为:;②在AC上取点E,使CE=,连接PE,BE,PC,∵,,∴,且∠PCE=∠ACP,∴,∴,∴,∴,∴,∴的最小值为,故答案为:. 1.如图,矩形中,,以B为圆心,以为半径画圆交边于点E,点P是弧上的一个动点,连结,则的最小值为( )A. B. C. D.【答案】C【详解】解:如图,连接BP,取BE的中点G,连接PG,∵,,∴,∵G是BE的中点,∴,∴,∵,∴,∴,∴,则,当P、D、G三点共线时,取最小值,即DG长,.故选:C.2.如图,已知菱形的边长为4,,的半径为2,P为上一动点,则的最小值_______.的最小值_______【答案】 【详解】①如图,在BC上取一点G,使得BG=1,连接PB、PG、GD,作DF⊥BC交BC延长线于F.∵,,∴,∵,∴,∴,∴,∴,∵,∴当D、P、G共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG,故答案为:;②如图,连接BD,在BD上取一点M,使得BM=,连接PB、PM、MC,过M作MN⊥BC于N.∵四边形ABCD是菱形,且, ∴AC⊥BD,∠AOB=90,∠ABO=∠CBO=∠ABC=30,∴AO=AB=2,BO=,∴BD=2 BO=,∴,,∴,且∠MBP=∠PBD,∴△MBP△PBD,∴,∴,∴,∴当M、P、C共线时,的值最小,最小值为CM,在Rt△BMN中,∠CBO =30,BM=,∴MN=BM=,BN=,∴CN=4-,∴MC=,∴的最小值为.3.如图,在中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则2AD+3BD的最小值是 .【分析】首先对问题作变式2AD+3BD=,故求最小值即可.考虑到D点轨迹是圆,A是定点,且要求构造,条件已经足够明显.当D点运动到AC边时,DA=3,此时在线段CD上取点M使得DM=2,则在点D运动过程中,始终存在.问题转化为DM+DB的最小值,直接连接BM,BM长度的3倍即为本题答案.【详解】 如图,在AC上取一点M,使CM=4∵∴∠MCD=∠ACD∴△DCM∽△ACD∴∴在△MDE中,MD+DBMD∴MD+DB最小值为MB。∴∴∴2AD+3BD=4.如图,抛物线与轴交于,,两点(点在点的左侧),与轴交于点,且,的平分线交轴于点,过点且垂直于的直线交轴于点,点是轴下方抛物线上的一个动点,过点作轴,垂足为,交直线于点.(1)求抛物线的解析式;(2)设点的横坐标为,当时,求的值;(3)当直线为抛物线的对称轴时,以点为圆心,为半径作,点为上的一个动点,求的最小值.【答案】(1)yx2x﹣3;(2);(3).【详解】(1)由题意A(,0),B(﹣3,0),C(0,﹣3),设抛物线的解析式为y=a(x+3)(x),把C(0,﹣3)代入得到a,∴抛物线的解析式为yx2x﹣3.(2)在Rt△AOC中,tan∠OAC,∴∠OAC=60°.∵AD平分∠OAC,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,﹣1),∴直线AD的解析式为yx﹣1,由题意P(m,m2m﹣3),H(m,m﹣1),F(m,0).∵FH=PH,∴1m﹣1﹣(m2m﹣3)解得m或(舍弃),∴当FH=HP时,m的值为.(3)如图,∵PF是对称轴,∴F(,0),H(,﹣2).∵AH⊥AE,∴∠EAO=60°,∴EOOA=3,∴E(0,3).∵C(0,﹣3),∴HC2,AH=2FH=4,∴QHCH=1,在HA上取一点K,使得HK,此时K().∵HQ2=1,HK•HA=1,∴HQ2=HK•HA,∴.∵∠QHK=∠AHQ,∴△QHK∽△AHQ,∴,∴KQAQ,∴AQ+QE=KQ+EQ,∴当E、Q、K共线时,AQ+QE的值最小,最小值.5.如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.6.如图1,在平面直角坐标系中,抛物线y=x2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P.连接AC.(1)求点P的坐标及直线AC的解析式;(2)如图2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为α(0°<α<90°),连接FA、FC.求AF+CF的最小值;【解答】解:(1)在抛物线y=x2+x+3中,当x=0时,y=3,∴C(0,3),当y=3时,x1=0,x2=2,∴P(2,3),当y=0时,x1=﹣4,x2=6,B(﹣4,0),A(6,0),设直线AC的解析式为y=kx+3,将A(6,0)代入,得,k=﹣,∴yAC=﹣x+3,∴点P坐标为P(2,3),直线AC的解析式为yAC=﹣x+3; (2)在OC上取点H(0,),连接HF,AH,则OH=,AH===,∵==,=,且∠HOF=∠FOC,∴△HOF∽△FOC,∴=,∴HF=CF,∴AF+CF=AF+HF≥AH=,∴AF+CF的最小值为;7.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.【解答】解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴ 解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0) (2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(可以直接利用点M是抛物线的顶点时,面积最大求解) (3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴==,∴PD=AP∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为
相关试卷
这是一份中考数学二轮复习专题38阿氏圆几何最值之隐形圆问题含解析答案,共37页。试卷主要包含了如图,在中,,cm,cm等内容,欢迎下载使用。
这是一份中考数学几何专项练习:最值问题之阿氏圆,文件包含中考数学几何专项练习最值问题之阿氏圆原卷docx、中考数学几何专项练习最值问题之阿氏圆解析版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份中考数学一轮复习考点复习专题39 几何最值之阿氏圆问题【热点专题】(含解析),共19页。