终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版)

    立即下载
    加入资料篮
    中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版)第1页
    中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版)第2页
    中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版)第3页
    还剩28页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版)

    展开

    这是一份中考数学二轮复习考点精讲专题41 几何问题(2)之综合问题(教师版),共31页。
    专题41 几何问题(2)之综合问题


    题型精讲


    题型一:材料阅读创新
    【例1】(2021·湖北中考真题)问题提出 如图(1),在和中,,,,点在内部,直线与交于点,线段,,之间存在怎样的数量关系?
    问题探究 (1)先将问题特殊化.如图(2),当点,重合时,直接写出一个等式,表示,,之间的数量关系;
    (2)再探究一般情形.如图(1),当点,不重合时,证明(1)中的结论仍然成立.
    问题拓展 如图(3),在和中,,,(是常数),点在内部,直线与交于点,直接写出一个等式,表示线段,,之间的数量关系.

    【答案】(1).(2)见解析;问题拓展:.
    【分析】
    (1)先证明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;
    (2)过点作交于点,证明,,是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.
    【详解】
    问题探究 (1).理由如下:如图(2),

    ∵∠BCA=∠ECF=90°,
    ∴∠BCE=∠ACF,
    ∵BC=AC,EC=CF,
    △BCE≌△ACF,
    ∴BE=AF,
    ∴BF-BE=BF-AF=EF=;
    (2)证明:过点作交于点,则,
    ∴.
    ∵,
    ∴.
    又∵,,
    ∴,
    ∴.
    ∴.
    ∴,,
    ∴是等腰直角三角形.
    ∴.
    ∴.

    问题拓展 .理由如下:
    ∵∠BCA=∠ECD=90°,
    ∴∠BCE=∠ACD,
    ∵BC=kAC,EC=kCD,
    ∴△BCE∽△ACD,
    ∴∠EBC=∠FAC,

    过点作交于点M,则,
    ∴.
    ∴△BCM∽△ACF,
    ∴BM:AF=BC:AC=MC:CF=k,
    ∴BM=kAF,MC=kCF,
    ∴BF-BM=MF,MF==
    ∴BF- kAF =.
    【例2】(2021·浙江中考真题)(证明体验)
    (1)如图1,为的角平分线,,点E在上,.求证:平分.

    (思考探究)
    (2)如图2,在(1)的条件下,F为上一点,连结交于点G.若,,,求的长.
    (拓展延伸)
    (3)如图3,在四边形中,对角线平分,点E在上,.若,求的长.
    【答案】(1)见解析;(2);(3)
    【分析】
    (1)根据SAS证明,进而即可得到结论;
    (2)先证明,得,进而即可求解;
    (3)在上取一点F,使得,连结,可得,从而得,可得,,最后证明,即可求解.
    【详解】
    解:(1)∵平分,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,即平分;
    (2)∵,
    ∴,
    ∵,
    ∴,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴;
    (3)如图,在上取一点F,使得,连结.


    ∵平分,

    ∵,
    ∴,
    ∴.
    ∵,
    ∴.
    ∵,
    ∴,
    ∴.
    ∵,
    ∴.
    ∵,
    又∵,

    ∴,
    ∴,
    ∴.
    题型二:定义材料阅读
    【例3】(2020•北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如
    下定义:平移线段AB,得到⊙O的弦A'B'(A',B′分别为点A,B的对应点),线段AA'长度的最小值称为
    线段AB到⊙O的“平移距离”.
    (1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是   ;在点P1,P2,P3,P4中,连接点A与点   的线段的长度等于线段AB到⊙O的“平移距离”;
    (2)若点A,B都在直线yx+2上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;
    (3)若点A的坐标为(2,),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.

    【分析】(1)根据平移的性质,以及线段AB到⊙O的“平移距离”的定义判断即可.
    (2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线yx+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),过点E作EH⊥MN于H,解直角三角形求出EH即可判断.
    (3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′和等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,点A′与M重合时,AA′的值最小,当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.
    解直角三角形求出AA′即可.
    【解析】(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.
    故答案为:P1P2∥P3P4,P3.
    (2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,

    设直线yx+2交x轴于M,交y轴于N.则M(﹣2,0),N(0,2),
    过点E作EH⊥MN于H,
    ∵OM=2,ON=2,
    ∴tan∠NMO,
    ∴∠NMO=60°,
    ∴EH=EM•sin60°,
    观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为.
    (3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,
    以OA,AB为邻边构造平行四边形ABDO,以OD为边构造等边△ODB′,等边△OB′A′,则AB∥A′B′,AA′的长即为线段AB到⊙O的“平移距离”,
    当点A′与M重合时,AA′的值最小,最小值=OA﹣OM1,
    当点B与N重合时,AA′的长最大,如图3中,过点A′作A′H⊥OA于H.

    由题意A′H,AH3,
    ∴AA′的最大值,
    ∴d2.
    题型三:操作材料阅读
    【例4】(2021·吉林中考真题)实践与探究
    操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则 度.
    操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则 度.
    在图②中,运用以上操作所得结论,解答下列问题:
    (1)设AM与NF的交点为点P.求证:.
    (2)若,则线段AP的长为 .

    【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)
    【分析】
    操作一:直接利用折叠的性质,得出两组全等三角形,从而得出,,从而得出∠EAF的值;
    操作二:根据折叠的性质得出 ,从而得出,即可求得的度数;
    (1)首先利用 ,得出 ,则,从而得出△ANF为等腰直角三角形,即可证得;
    (2)利用三角函数或者勾股定理求出BE的长,则,设DF=x,那么FC=,在Rt△EFC中,利用勾股定理得出DF的长,也就是MF的长,即可求得EF的长,进而可得结果.
    【详解】
    操作一:45°,证明如下:
    ∵折叠得到 , 折叠得到 ,
    ∴ ,
    ∴ ,

    ,
    故填:45°;
    操作二:60°,证明如下:
    ∵,
    ∴ ,
    又∵沿着EF折叠得到 ,
    ∴,
    ∴ ,
    ∴ ,
    故填:60°;
    (1)证明:
    由上述证明得,,
    ∴ ,
    ∵四边形ABCD为正方形,
    ∴∠C=∠D=90°,
    ∴ ,,
    又∵ ,
    ∴,
    在和中,
    ∵ ,
    ∴ ,
    ∴ ,
    ∴ ,
    ∴ ,
    ∴为等腰直角三角形,
    即AN=NF,
    在和中:


    (2)由题可知是直角三角形,,
    ∴ ,
    解得BE=1,
    ∴BE=EM=1,,
    设DF=x,则MF=x,CF=,
    在Rt△CEF中,


    解得x=,
    则,

    ∴AP=EF=.
    【例5】(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作等大小的角,可以采用如下方法:
    操作感知:
    第一步:对折矩形纸片,使与重合,得到折痕,把纸片展开(如图13-1).
    第二步:再一次折叠纸片,使点落在上,并使折痕经过点,得到折痕,同时得到线段(如图13-2).

    猜想论证:
    (1)若延长交于点,如图13-3所示,试判定的形状,并证明你的结论.
    拓展探究:
    (2)在图13-3中,若,当满足什么关系时,才能在矩形纸片中剪出符(1)中的等边三角形?
    【答案】(1)是等边三角形,理由见解析;(2),理由见解析
    【分析】
    (1)连接,由折叠性质可得是等边三角形, ,,然后可得到 ,即可判定 是等边三角形.
    (2)由折叠可知,由(1)可知,利用 的三角函数即可求得.
    【详解】
    (1)解:是等边三角形,
    证明如下:
    连接.
    由折叠可知:,垂直平分.
    ∴,
    ∴,
    ∴为等边三角形,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∴,
    ∴是等边三角形.

    (2)解:方法一:
    要在矩形纸片上剪出等边,则,
    在中,,,
    ∴,
    ∵,
    ∴,即,
    当或()时,在矩形纸片上能剪出这样的等边.
    方法二:
    要在矩形纸片上剪出等边,则,
    在中,,,
    设,则,
    ∴,即,得,
    ∴,
    ∵,
    ∴,即,
    当(或)时,在矩形纸片上能剪出这样的等边.
    提分作业

    1.(2021·山西中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;
    独立思考:(1)请解答老师提出的问题;
    实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;
    问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.

    【答案】(1);见解析;(2),见解析;(3).
    【分析】
    (1)如图,分别延长,相交于点P,根据平行四边形的性质可得,根据平行线的性质可得,,利用AAS可证明△PDF≌△BCF,根据全等三角形的性质可得,根据直角三角形斜边中线的性质可得,即可得;
    (2)根据折叠性质可得∠CFB=∠C′FB=∠CFC′,FC=FC′,可得FD=FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D,根据三角形外角性质可得∠CFC′=∠FDC′+∠FC′D,即可得出∠C′FB=∠FC′D,可得DG//FB,即可证明四边形DGBF是平行四边形,可得DF=BG=,可得AG=BG;
    (3)如图,过点M作MQ⊥A′B于Q,根据平行四边形的面积可求出BH的长,根据折叠的性质可得A′B=AB,∠A=∠A′,∠ABM=∠MBH,根据可得A′B⊥AB,即可证明△MBQ是等腰直角三角形,可得MQ=BQ,根据平行四边形的性质可得∠A=∠C,即可得∠A′=∠C,进而可证明△A′NH∽△CBH,根据相似三角形的性质可得A′H、NH的长,根据NH//MQ可得△A′NH∽△A′MQ,根据相似三角形的性质可求出MQ的长,根据S阴=S△A′MB-S△A′NH即可得答案.
    【详解】
    (1).
    如图,分别延长,相交于点P,
    ∵四边形是平行四边形,
    ∴,
    ∴,,
    ∵为的中点,
    ∴,
    在△PDF和△BCF中,,
    ∴△PDF≌△BCF,
    ∴,即为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴.

    (2).
    ∵将沿着所在直线折叠,点的对应点为,
    ∴∠CFB=∠C′FB=∠CFC′,,
    ∵为的中点,
    ∴,
    ∴,
    ∴∠FDC′=∠FC′D,
    ∵=∠FDC′+∠FC′D,
    ∴,
    ∴∠FC′D=∠C′FB,
    ∴,
    ∵四边形为平行四边形,
    ∴,DC=AB,
    ∴四边形为平行四边形,
    ∴,
    ∴,
    ∴.
    (3)如图,过点M作MQ⊥A′B于Q,
    ∵的面积为20,边长,于点,
    ∴BH=50÷5=4,
    ∴CH=,A′H=A′B-BH=1,
    ∵将沿过点的直线折叠,点A的对应点为,
    ∴A′B=AB,∠A=∠A′,∠ABM=∠MBH,
    ∵于点,AB//CD,
    ∴,
    ∴∠MBH=45°,
    ∴△MBQ是等腰直角三角形,
    ∴MQ=BQ,
    ∵四边形ABCD是平行四边形,
    ∴∠A=∠C,
    ∴∠A′=∠C,
    ∵∠A′HN=∠CHB,
    ∴△A′NH∽△CBH,
    ∴,即,
    解得:NH=2,
    ∵,MQ⊥A′B,
    ∴NH//MQ,
    ∴△A′NH∽△A′MQ,
    ∴,即,
    解得:MQ=,
    ∴S阴=S△A′MB-S△A′NH=A′B·MQ-A′H·NH=×5×-×1×2=.

    2.(2021·浙江嘉兴市·中考真题)小王在学习浙教版九上课本第72页例2后,进一步开展探究活动:将一个矩形绕点顺时针旋转,得到矩形
    [探究1]如图1,当时,点恰好在延长线上.若,求BC的长.


    [探究2]如图2,连结,过点作交于点.线段与相等吗?请说明理由.


    [探究3]在探究2的条件下,射线分别交,于点,(如图3),,存在一定的数量关系,并加以证明.


    【答案】[探究1];[探究2],证明见解析;[探究3],证明见解析
    【分析】
    [探究1] 设,根据旋转和矩形的性质得出,从而得出,得出比例式,列出方程解方程即可;
    [探究2] 先利用SAS得出,得出,,再结合已知条件得出,即可得出;
    [探究3] 连结,先利用SSS得出,从而证得,再利用两角对应相等得出,得出即可得出结论.
    【详解】
    [探究1]如图1,

    设.
    ∵矩形绕点顺时针旋转得到矩形,
    ∴点,,在同一直线上.
    ∴,,
    ∴.
    ∵,
    ∴.
    又∵点在延长线上,
    ∴,
    ∴,∴.
    解得,(不合题意,舍去)
    ∴.
    [探究2] .
    证明:如图2,连结.

    ∵,
    ∴.
    ∵,,,
    ∴.
    ∴,,
    ∵,,
    ∴,
    ∴.
    [探究3]关系式为.
    证明:如图3,连结.

    ∵,,,
    ∴.
    ∴,
    ∵,

    ∴,
    ∴.
    在与中,
    ,,
    ∴,
    ∴,
    ∴.
    ∴.
    3.(2020·山东中考真题)在等腰△ABC中,AC=BC,是直角三角形,∠DAE=90°,∠ADE=∠ACB,连接BD,BE,点F是BD的中点,连接CF.
    (1)当∠CAB=45°时.
    ①如图1,当顶点D在边AC上时,请直接写出∠EAB与∠CBA的数量关系是   .线段BE与线段CF的数量关系是   ;
    ②如图2,当顶点D在边AB上时,(1)中线段BE与线段CF的数量关系是否仍然成立?若成立,请给予证明,若不成立,请说明理由;
    学生经过讨论,探究出以下解决问题的思路,仅供大家参考:
    思路一:作等腰△ABC底边上的高CM,并取BE的中点N,再利用三角形全等或相似有关知识来解决问题;
    思路二:取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°,再利用旋转性质、三角形全等或相似有关知识来解快问题.
    (2)当∠CAB=30°时,如图3,当顶点D在边AC上时,写出线段BE与线段CF的数量关系,并说明理由.

    【答案】(1)①,;②仍然成立,证明见解析;(2),理由见解析.
    【分析】
    (1)①如图1中,连接BE,设DE交AB于T.首先证明再利用直角三角形斜边中线的性质解决问题即可.②解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.证明(SAS),可得结论.解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把绕点C逆时针旋转90°得到,连接DT,GT,BG.证明四边形BEGT是平行四边形,四边形DGBT是平行四边形,可得结论.
    (2)结论:BE=.如图3中,取AB的中点T,连接CT,FT.证明,可得结论.
    【详解】
    解:(1)①如图1中,连接BE,设DE交AB于T.

    ∵CA=CB,∠CAB=45°,
    ∴∠CAB=∠ABC=45°,
    ∴∠ACB=90°,
    ∵∠ADE=∠ACB=45°,∠DAE=90°,
    ∴∠ADE=∠AED=45°,
    ∴AD=AE,


    ∴AT⊥DE,DT=ET,
    ∴AB垂直平分DE,
    ∴BD=BE,
    ∵∠BCD=90°,DF=FB,
    ∴CF=BD,
    ∴CF=BE.
    故答案为:∠EAB=∠ABC,CF=BE.
    ②结论不变.
    解法一:如图2﹣1中,取AB的中点M,BE的中点N,连接CM,MN.

    ∵∠ACB=90°,CA=CB,AM=BM,
    ∴CM⊥AB,CM=BM=AM,
    由①得:
    设AD=AE=y.FM=x,DM=a,
    点F是BD的中点,
    则DF=FB=a+x,
    ∵AM=BM,
    ∴y+a=a+2x,
    ∴y=2x,即AD=2FM,
    ∵AM=BM,EN=BN,
    ∴AE=2MN,MN∥AE,
    ∴MN=FM,∠BMN=∠EAB=90°,
    ∴∠CMF=∠BMN=90°,
    ∴(SAS),
    ∴CF=BN,
    ∵BE=2BN,
    ∴CF=BE.
    解法二:如图2﹣2中,取DE的中点G,连接AG,CG,并把△CAG绕点C逆时针旋转90°得到,连接DT,GT,BG.

    ∵AD=AE,∠EAD=90°,EG=DG,
    ∴AG⊥DE,∠EAG=∠DAG=45°,AG=DG=EG,
    ∵∠CAB=45°,
    ∴∠CAG=90°,
    ∴AC⊥AG,
    ∴AC∥DE,
    ∵∠ACB=∠CBT=90°,

    ∴AC∥BT∥,
    ∵AG=BT,
    ∴DG=BT=EG,
    ∴四边形BEGT是平行四边形,四边形DGBT是平行四边形,
    ∴BD与GT互相平分,
    ∵点F是BD的中点,
    ∴BD与GT交于点F,
    ∴GF=FT,
    由旋转可得;
    是等腰直角三角形,
    ∴CF=FG=FT,
    ∴CF=BE.
    (2)结论:BE=.
    理由:如图3中,取AB的中点T,连接CT,FT.

    ∵CA=CB,
    ∴∠CAB=∠CBA=30°,∠ACB=120°,
    ∵AT=TB,
    ∴CT⊥AB,

    ∴AT=,
    ∴AB=,
    ∵DF=FB,AT=TB,
    ∴TF∥AD,AD=2FT,
    ∴∠FTB=∠CAB=30°,
    ∵∠CTB=∠DAE=90°,
    ∴∠CTF=∠BAE=60°,
    ∵∠ADE=∠ACB=60°,

    ∴AE=AD=FT,
    ∴,
    ∴,
    ∴,
    ∴.
    4.(2021·浙江中考真题)(推理)
    如图1,在正方形ABCD中,点E是CD上一动点,将正方形沿着BE折叠,点C落在点F处,连结BE,CF,延长CF交AD于点G.
    (1)求证:.
    (运用)
    (2)如图2,在(推理)条件下,延长BF交AD于点H.若,,求线段DE的长.
    (拓展)
    (3)将正方形改成矩形,同样沿着BE折叠,连结CF,延长CF,BF交直线AD于G,两点,若,,求的值(用含k的代数式表示).


    【答案】(1)见解析;(2);(3)或
    【分析】
    (1)根据ASA证明;
    (2)由(1)得,由折叠得,进一步证明,由勾股定理得,代入相关数据求解即可;
    (3)如图,连结HE,分点H在D点左边和点在点右边两种情况,利用相似三角形的判定与性质得出DE的长,再由勾股定理得,代入相关数据求解即可.
    【详解】
    (1)如图,由折叠得到,


    又四边形ABCD是正方形,



    又 正方形



    (2)如图,连接,

    由(1)得,

    由折叠得,,

    四边形是正方形,


    又,


    ,,
    ,.



    (舍去).
    (3)如图,连结HE,

    由已知可设,,可令,
    ①当点H在D点左边时,如图,
    同(2)可得,,

    由折叠得,

    又,


    又,









    (舍去).

    ②当点在点右边时,如图,

    同理得,,
    同理可得,
    可得,,


    (舍去).




    相关试卷

    中考数学二轮复习专题41几何问题之动点问题含解析答案:

    这是一份中考数学二轮复习专题41几何问题之动点问题含解析答案,共67页。试卷主要包含了已知等内容,欢迎下载使用。

    中考数学一轮复习考点复习专题41 几何问题(2)之综合问题【热点专题】(含解析):

    这是一份中考数学一轮复习考点复习专题41 几何问题(2)之综合问题【热点专题】(含解析),共31页。

    中考数学二轮复习考点精讲专题39 几何最值之阿氏圆问题(教师版):

    这是一份中考数学二轮复习考点精讲专题39 几何最值之阿氏圆问题(教师版),共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map