终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题9.11平行四边形的性质与判定大题专练(重难点 ,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(原卷版)【苏科版】.docx
    • 解析
      专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(解析版)【苏科版】.docx
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(原卷版)【苏科版】第1页
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(原卷版)【苏科版】第2页
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(原卷版)【苏科版】第3页
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(解析版)【苏科版】第1页
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(解析版)【苏科版】第2页
    专题9.11平行四边形的性质与判定大题专练(重难点培优,八下苏科)- 2022-2023学年八年级数学下册 必刷题(解析版)【苏科版】第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题9.11平行四边形的性质与判定大题专练(重难点 ,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】

    展开

    这是一份专题9.11平行四边形的性质与判定大题专练(重难点 ,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题911平行四边形的性质与判定大题专练重难点培优八下苏科-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题911平行四边形的性质与判定大题专练重难点培优八下苏科-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
     2022-2023学年八年级数学下册 必刷题【苏科版】
    专题9.11平行四边形的性质与判定大题提升训练(重难点培优30题)
    班级:___________________ 姓名:_________________ 得分:_______________
    注意事项:
    本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
    一、解答题
    1.(2022春·江苏常州·八年级统考期中)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F,求证:OE=OF.

    【答案】见解析
    【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.
    【详解】证明:∵四边形ABCD是平行四边形,
    ∴OA=OC,AD∥BC,
    ∴∠OAE=∠OCF,
    在△OAE和△OCF中,∠OAE=∠OCFOA=OC∠AOE=∠COF,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF.
    【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.熟练掌握平行四边形的性质是解题的关键.
    2.(2022春·江苏连云港·八年级校考期中)如图,E、F是平行四边形ABCD对角线BD上的两点,且BE=DF.求证:四边形AECF是平行四边形.

    【答案】见解析
    【分析】连接AC,交BD于点O,由“平行四边形ABCD的对角线互相平分”得到OA=OC,OB=OD;然后结合已知条件证得OE=OF,则“对角线互相平分的四边形是平行四边形”,即可得出结论.
    【详解】证明:连接AC,交BD于点O,如图所示:

    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵BE=DF,
    ∴OB-BE=OD-DF,即OE=OF,
    ∵OA=OC,
    ∴四边形AECF是平行四边形.
    【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的性质,熟记对角线互相平分的四边形是平行四边形是解决问题的关键.
    3.(2022秋·江苏盐城·八年级校联考阶段练习)已知:如图,∠ABC=∠ADC,AD∥BC.求证:AD=BC.

    【答案】见解析
    【分析】根据平行线的性质得到∠ADB=∠DBC,利用角的转化证明AB∥CD,证明四边形ABCD为平行四边形,即可得证.
    【详解】证明:∵AD∥BC,
    ∴∠ADB=∠DBC,
    又∵∠ABC=∠ADC,
    ∴∠ABC−∠DBC=∠ADC−∠ADB,
    即:∠ABD=∠BDC,
    ∴AB∥CD,
    ∴四边形ABCD为平行四边形,
    ∴AD=BC.
    【点睛】本题考查平行四边形的判定和性质.根据平行线的性质和判定证明四边形为平行四边形是解题的关键.
    4.(2022春·江苏泰州·八年级统考期中)如图,在四边形ABCD中,AD//BC,点E、F在BD上,AE//CF,且AE=CF.求证:四边形ABCD是平行四边形.

    【答案】见解析
    【分析】先根据AD//BC、AE//CF得出等角,再证明△ADE≅△CBF,得到AD=BC,从而证明四边形ABCD是平行四边形.
    【详解】∵AD//BC
    ∴∠ADE=∠CBF(两直线平行,内错角相等)
    又∵AE//CF
    ∴∠AED=∠CFB(两直线平行,内错角相等)
    在△ADE与△CBF中,
    ∠ADE=∠CBF∠AED=∠CFBAE=CF
    ∴△ADE≅△CBF(AAS)
    ∴AD=BC
    ∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)
    【点睛】本题考查平行四边形的判定,解决本题的关键是熟知平行四边形的判定定理.
    5.(2022春·江苏宿迁·八年级统考阶段练习)如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E、F在对角线AC上,且AE=CF.求证:四边形EGFH是平行四边形.

    【答案】见解析
    【分析】根据平行四边形的性质得到AB//CD,AB= CD,根据平行线的性质得到∠GAE=∠HCF,得△AGE≌△CHF(SAS),根据全等三角形的性质得到GE= HF,∠AEG =∠CFH,根据平行四边形的判定定理即可得到结论.
    【详解】证明:∵四边形ABCD是平行四边形,
    ∴AB//CD,AB=CD,
    ∴∠GAE=∠HCF,
    ∵点G,H分别是AB,CD的中点,
    ∴AG=CH,
    在△AGE和△CHF中,
    AG=CH∠GAE=∠HCFAE=CF ,
    ∴△AGE≌△CHF(SAS),
    ∴GE=HF,∠AEG=∠CFH,  
    ∴∠GEF=∠HFE,
    ∴GE//HF,
    又∵GE=HF,
    ∴四边形EGFH是平行四边形
    【点睛】本题考查了平行四边形的判定与性质、全等三角形的判定与性质,熟练掌握平行四边形判定与的性质是解题的关键.
    6.(2022春·江苏淮安·八年级校联考期中)已知点E、F分别为平行四边形ABCD的边AD、BC的中点,求证:四边形EBFD为平行四边形.

    【答案】见解析
    【分析】由平行四边形的性质得AD=BC,AD∥BC,再由中点的定义得DE=12AD,BF=12BC,则DE=BF,DE∥BF,即可得出结论.
    【详解】证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC,
    ∵点E、F分别为平行四边形ABCD的边AD、BC的中点,
    ∴DE=12AD,BF=12BC,
    ∴DE=BF,DE∥BF,
    ∴四边形EBFD为平行四边形.
    【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.
    7.(2022春·江苏盐城·八年级景山中学校考期末)在四边形ABCD中,已知AD∥BC,∠B=∠D,AE⊥BC于点E,AF⊥CD于点F.
    (1)求证:四边形ABCD是平行四边形;
    (2)若AF=2AE,BC=6,求CD的长.

    【答案】(1)见解析;(2)3
    【分析】(1)根据两组对边分别平行证明该四边形为平行四边形.
    (2)利用等面积法求出CD长.
    【详解】(1)
    证明:∵AD//BC,
    ∴∠BAD+∠B=180°,
    ∵∠B=∠D,
    ∴∠BAD+∠D=180°,
    ∴AB//CD,
    又∵AD//BC,
    ∴四边形ABCD是平行四边形;
    (2)解:∵AE⊥BC于点E,AF⊥CD于点F,
    ∴平行四边形的面积=BC×AE=CD×AF,
    ∵AF=2AE,
    ∴BC=2CD=6,
    ∴CD=3.
    【点睛】本题考查平行四边形的判定和等面积法的使用,掌握这两点是解题关键.
    8.(2021春·江苏泰州·八年级校考阶段练习)如图,▱ABCD的对角线AC,BD相交于点O,若AO+BO=4,则AC+BD的长是___.

    【答案】8
    【分析】由平行四边形的性质得出OA=OC,OB=OD,即可求出AC+BD=2(OA+OB).
    【详解】解:∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∴AC+BD=2(OA+OB)=8.
    故答案为:8.
    【点睛】本题主要考查了平行四边形的对角线性质,解题的关键是熟练掌握平行四边形的对角线性质——平行四边形对角线互相平分.
    9.(2022春·江苏淮安·八年级校考阶段练习)如图,在平行四边形ABCD中,E、F是对角线A、C上的两点,且AE=CF,求证:四边形BFDE是平行四边形.

    【答案】见解析
    【分析】连接DB,交AC于点O,由平行四边形的性质得出AO=CO,DO=BO,证出EO=FO,即可得出结论.
    【详解】证明:连接DB,交AC于点O,

    ∵四边形ABCD是平行四边形,
    ∴AO=CO,DO=BO,
    又∵AE=CF,
    ∴EO=FO,
    ∴四边形BFDE是平行四边形.
    【点睛】本题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解题的关键.
    10.(2021春·江苏徐州·八年级校考阶段练习)已知:如图,在四边形ABCD中,DE,BF分别是∠ADC和∠ABC的角平分线,交AB,CD于点E,F连接BD,EF.

    (1)求证:BD,EF互相平分;
    (2)若∠A=60°,AE=2EB,AD=4,求四边形DEBF的周长和面积.
    【答案】(1)见解析
    (2)四边形DEBF的周长为12,四边形DEBF的面积为43

    【分析】(1)证明BD,EF互相平分,只要证DEBF是平行四边形,利用两组对边分别平行来证明.
    (2)首先证明出△ADE是等边三角形,然后根据平行四边形的周长公式求解,过D点作DG⊥AB于点G,根据勾股定理求出DG=23,然后利用平行四边形的面积公式求解即可.
    【详解】(1)解:∵四边形ABCD是平行四边形
    ∴CD∥AB,CD=AB,AD=BC
    ∵DE、BF分别是∠ADC和∠ABC的角平分线
    ∴∠ADE=∠CDE,∠CBF=∠ABF
    ∵CD∥AB,
    ∴∠AED=∠CDE,∠CFB=∠ABF
    ∴∠AED=∠ADE,∠CFB=∠CBF
    ∴AE=AD,CF=CB,
    ∴AE=CF,
    ∴AB−AE=CD−CF即BE=DF
    ∵DF∥BE,
    ∴四边形DEBF是平行四边形,
    ∴BD,EF互相平分;
    (2)∵∠A=60°,AE=AD,
    ∴△ADE是等边三角形
    ∵AD=4,
    ∴DE=AE=4,
    ∵AE=2EB,
    ∴BE=2
    ∴四边形DEBF的周长=2BE+DE=24+2=12;
    过D点作DG⊥AB于点G,

    在Rt△ADG中,AD=4,∠A=60°,
    ∴∠ADG=30°,
    ∴AG=12AD=2,
    ∴DG=AD2−AG2=23,
    ∴四边形DEBF的面积=BE×DG=2×23=43.
    【点睛】此题主要考查了平行四边形的性质与判定,勾股定理,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
    11.(2022春·江苏盐城·八年级校考阶段练习)如图,在平行四边形ABCD中,

    (1)若点E、F是AD、BC的中点,连接BE、DF,求证:BE=DF;
    (2)若DF平分∠ADC且交边BC于点F,如果AB=5,BC=8,试求线段BF的长.
    【答案】(1)见解析
    (2)3
    【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,AD=BC,再由点E、F是AD、BC的中点,可得DE=BF,即可求证;
    (2)根据AD∥BC和DF平分∠ADC可得∠CFD=∠CDF,从而得到CF=CD=5,即可求解.
    (1)
    证明∶∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∵点E、F是AD、BC的中点,
    ∴DE=12AD,BF=12BC,
    ∴DE=BF,
    ∴四边形BFDE是平行四边形,
    ∴BE=DF;
    (2)
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC, CD=AB=5,
    ∴∠ADF=∠CFD,
    ∵DF平分∠ADC,
    ∴∠ADF=∠CDF,
    ∴∠CFD=∠CDF,
    ∴CF=CD=5,
    ∴BF=BC-CF=8-5=3.
    【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定;熟记平行四边形的性质,证出CF=CD是解决问题(2)的关键.
    12.(2021春·江苏苏州·八年级校联考阶段练习)如图,在平行四边形ABCD中,直线EF∥BD,与CD、CB的延长线分别交于点E、F,交AB、AD于G、H.

    (1)求证:四边形FBDH为平行四边形;
    (2)求证:FG=EH.
    【答案】(1)见解析
    (2)见解析
    【分析】(1)根据四边形ABCD为平行四边形,可得AD∥BC,根据已知条件可得EF∥BD,根据两组对边分别平行的四边形是平行四边形即可得证;
    (2)同(1)的方法证明四边形BDEG为平行四边形,得出HF=BD由四边形FBDH为平行四边形,可得BD=EG,进而可得FH=EG,根据FH−GH=EG−GH,即可得证.
    (1)
    ∵四边形ABCD为平行四边形,
    ∴AD∥BC,
    ∴EF∥BD,
    ∴四边形FBDH为平行四边形,
    (2)
    ∵四边形FBDH为平行四边形,
    ∴HF=BD,
    ∵EF∥BD,AB∥DC,
    ∴四边形BDEG为平行四边形,
    ∴BD=EG,
    ∴FH=EG,
    ∴FH−GH=EG−GH,
    ∴FG=EH.
    【点睛】本题考查了平行四边形的性质与判定,掌握平行四边的性质与判定是解题的关键.
    13.(2022春·江苏无锡·八年级校考阶段练习)如图,在平行四边形ABCD中,AE、CF分别平分∠BAD和∠DCB,交BC、AD于点E和点F.试说明:

    (1)△ABE是等腰三角形;
    (2)四边形AECF是平行四边形.
    【答案】(1)见解析
    (2)见解析

    【分析】(1)根据四边形ABCD是平行四边形,得AD∥BC,得∠AEB=∠EAF;根据AE平分∠BAD,得∠BAE=∠EAF,等量代换得∠BAE=∠AEB,根据等角对等边,即可证明△ABE是等腰三角形.
    (2)根据题(1)得,AB=BE,同理可证△DFC是等腰三角形,得FD=DC,根据四边形ABCD是平行四边形,得AB=CD,AD=BC,AD∥BC,得AB=BE=DF=DC,BC−BE=AD−DF,AF∥EC;根据平行四边形的判定定理,即可证明四边形AECF是平行四边形.
    (1)
    ∵四边形ABCD是平行四边形
    ∴AD∥BC
    ∴∠AEB=∠EAF
    ∵AE平分∠BAD
    ∴∠BAE=∠EAF
    ∴∠AEB=∠BAE
    ∴AB=BE
    ∴△ABE是等腰三角形.
    (2)
    由(1)得,AB=BE
    同理可得△DFC是等腰三角形
    ∴FD=DC
    ∵四边形ABCD是平行四边形
    ∴AB=CD,AD=BC,AD∥BC
    ∴AB=BE=DF=DC,AF∥EC
    ∴BC−BE=AD−DF
    ∴AF=EC
    ∴四边形AECF是平行四边形.
    【点睛】本题考查等腰三角形和平行四边形的综合应用,解题的关键是熟练掌握等腰三角形的性质和判定定理和平行四边形的性质和判定定理.
    14.(2022春·江苏无锡·八年级校考阶段练习)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.

    (1)如图1,求证:AE=CF;
    (2)如图2,延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.
    【答案】(1)证明见解析.
    (2)证明见解析.

    【分析】(1)根据平行四边形的性质可得OA=OC,又因为∠AOE=∠COF ,OE=OF,进而可证明△AOE≌△COF(SAS),根据全等三角形的性质即可得证;
    (2)由(1)得△AOE≌△COF,根据全等三角形的性质可得∠EAO=∠FCO,进而可得AG∥CF ;根据平行四边形的性质可得AB∥CD ,进而可证四边形AHCG是平行四边形,从而得出AH=CG.
    (1)
    证明:∵四边形ABCD是平行四边形,
    ∴OA=OC
    又∵ ∠AOE=∠COF,OE=OF
    ∴△AOE≌△COF(SAS)
    ∴AE=CF.
    (2)
    证明:由(1)得△AOE≌△COF,
    ∴∠EAO=∠FCO
    ∴AG∥CF
    ∵四边形ABCD是平行四边形
    ∴AB∥CD
    即AH∥CG
    ∴四边形AHCG是平行四边形
    ∴AH=CG.
    【点睛】本题考查了三角形全等的性质与判定,平行四边形的性质与判定,熟练掌握性质与判定定理是解决本题的关键.
    15.(2022春·江苏无锡·八年级校考阶段练习)如图,平行四边形ABCD中,点E是BC的中点,用无刻度的直尺按下列要求作图.

    (1)在图1中,作边AD上的中点F;
    (2)在图2中,作边AB上的中点G.
    【答案】(1)见解析
    (2)见解析

    【分析】(1)根据平行四边形的性质即可在图1中,作边AD上的中点F;
    (2)根据平行四边形的性质在图2中,作两次平行四边形即可作边AB上的中点G.
    (1)
    解:在图1中,点F即为边AD上的中点;

    (2)
    在图2中,点G即为边AB上的中点.

    【点睛】本题考查了作图一复杂作图、线段垂直平分线的性质、平行四边形的性质,解决本题的关键是准确画图.
    16.(2022春·江苏扬州·八年级统考期末)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,∠C=∠F.

    (1)求证:△ABC≌△DEF.
    (2)连结CF,请判断四边形BCFE的形状,并证明你的结论.
    【答案】(1)见解析
    (2)四边形BCFE是平行四边形,证明见解析

    【分析】(1)由AC∥DF推出∠CAB=∠FDE,进而根据AAS证明即可;
    (2)由全等三角形的性质得到BC=EF,∠CBA=∠FED,推出BC∥EF,即可证得四边形BCFE是平行四边形.
    (1)
    证明:∵AC∥DF,
    ∴∠CAB=∠FDE,
    在△ABC和△DEF中,
    ∠C=∠F∠CAB=∠FDEAB=DE,
    ∴△ABC≌△DEF(AAS).
    (2)
    结论:四边形BCFE是平行四边形
    如图,


    ∵△ABC≌△DEF,
    ∴BC=EF,∠CBA=∠FED,
    ∴BC∥EF,
    ∴四边形BCFE是平行四边形.
    【点睛】此题考查了全等三角形的判定和性质,平行四边形的判定,熟记各判定定理及性质定理是解题的关键.
    17.(2021春·江苏常州·八年级统考期末)如图,在△ABC中,AB=AC=7,BC=5,将△ABC绕点C旋转,使得点D落在AB边上,点A落在点E处,连接AE.
    (1)求证:四边形ABCE是平行四边形;
    (2)求△AFE的面积.

    【答案】(1)见解析;(2)901973
    【分析】(1)证明AB∥CE,AB=CE即可;
    (2)如图,过点C作CT⊥AB于T,CK⊥DE于K,过点A作AJ⊥EF于J.证明AJCK=AFFC,求出CT,△ACE的面积,即可解决问题.
    【详解】证明:(1)∵AB=AC,
    ∴∠B=∠ACB,
    ∵将△ABC绕点C旋转,使得点D落在AB边上,
    ∴AC=CE=AB,∠ACB=∠DCE,CB=CD,
    ∴∠B=∠CDB,
    ∴∠CDB=∠DCE,
    ∴AB∥CE,
    ∴四边形ABCE是平行四边形.
    (2)如图,过点C作CT⊥AB于T,CK⊥DE于K,过点A作AJ⊥EF于J.

    ∵CB=CD=5,CT⊥BD,
    ∴BT=DT,
    设BT=x,
    ∵CT2=BC2﹣BT2=AC2﹣AT2,
    ∴52−x2=72−(7﹣x)2,
    ∴x=2514,
    ∴BD=2x=257,CT=BC2−BT2=52−(2514)2=151914
    ∴AD=AB-BD=7-257=247,
    ∵S△ADE=12•AD•CT=12•AJ•DE,
    ∴AJCT=2477=2449,
    ∵SΔAEFSΔEFC=12⋅EF⋅AJ12⋅EF⋅CK=AJCK=AFFC,
    ∵∠CDB=∠CDE,CT⊥DB,CK⊥DE
    ∴CT=CK,
    ∴AFFC=AJCT=2449,
    ∴AF=2473AC,
    ∴S△AEF=2473S△AEC=2473×12×7×151914=901973.
    【点睛】此题主要考查了平行四边形的证明以及勾股定理的应用,熟练掌握平行四边形的证明方法以及勾股定理的应用是解题的关键.
    18.(2022春·江苏南通·八年级校考阶段练习)如图,在▱ABCD中,E、F是对角线AC上的两点,AE=CF.
    (1)求证:四边形BEDF是平行四边形;
    (2)连接BD交EF于点O,当BE⊥EF且BE=8,BF=10时,求BD的长.

    【答案】(1)见解析;(2)273
    【分析】(1)先由▱ABCD得对角线互相平分且相等OA=OC,OB=OD,再由条件中AE=CF得到要证明的四边形BEDF的对角线互相平分且相等,即可证明BEDF为平行四边形.
    (2)在Rt△BEF中已知BE=8,BF=10,利用勾股定理可求得EF的长,进而即可得到EO的长,再在Rt△BEO中,利用勾股定理求得BO的长,即可得到BD长.
    【详解】解:(1)证明:连接BD交AC于O.

    ∵四边形ABCD是平行四边形,
    ∴OA=OC,OB=OD,
    ∵AE=CF,
    ∴OE=OF,∵OB=OD,
    ∴四边形BEDF是平行四边形;
    (2)∵BE⊥AC,
    ∴∠BEF=90°,
    在Rt△BEF中,EF=BF2−BE2=102−82=6,
    ∴OE=OF=3,
    在Rt△BEO中,OB=BE2+OE2=82+32=73,
    ∴BD=2OB=273.
    【点睛】本题主要考查平行四边形的性质及判定、应用勾股定理解三角形,重点在于根据已知找到各线段间关系.
    19.(2020春·江苏泰州·八年级校考期中)如图,在□ABCD中,点E是边AD上一点,且AE=AB.

    (1)作∠BCD的角平分线CF,交AD于F点,交BE于G点;(尺规作图,保留痕迹,不写画法)
    (2)在(1)的条件下,
    ①求∠BGC的度数;
    ②设AB=a,BC=b,则线段EF= (用含a,b的式子表示);
    ③若AB=10,CF=12,求BE的长.
    【答案】(1)见解析;(2)①90°;②2a−b;③ BE=16
    【分析】(1)以点D为圆心,DC为半径作圆交AD于点F,连接CF交BE于点G即为所作;
    (2)①根据角平分线的定义和平行线的性质,就可求出;
    ②根据角平分线的定义和平行线的性质可得出DC=DF,再因为AB=AE即可求出;
    ③根据平行线+角平分线可推出等腰三角形,进而可证得四边形AHCF是平行四边形,因为∠BGC=90°可得∠AMB=90°,所以点M是BE的中点也是AH的中点,再根据勾股定理可求出BM的值,即可求出答案.
    【详解】(1)如下图所示:

    此图即为所作.
    (2)①∵AB=AE,
    ∴∠ABE=∠AEB,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,∠ABC+∠BCD=180°,
    ∴∠AEB=∠CBE,
    ∴∠ABE=∠CBE=12∠ABC,
    ∵CF平分∠BCD,
    ∴∠BCF=12∠BCD,
    ∴∠CBE+∠BCF=90°,
    ∴∠BGC=180°-90°=90°
    ②∵CF平分∠BCD,
    ∴∠BCF=∠DCF
    ∵AD∥BC,
    ∴∠BCF=∠DFC,
    ∴∠DFC=∠DCF,
    ∴DF=DC,
    ∵AB=a,BC=b,
    ∴EF=2a−b,
    ③作∠BAD的平分线交BC于点H,交BE于点M,如下图所示:

    ∵AH平分∠BAD,
    ∴∠BAH=∠DAH,
    ∵AD∥BC,
    ∴∠BAH=∠AHB,
    ∴AB=BH,△ABH是等腰三角形,    
    ∵DC=DF,
    ∴BH=DF
    ∴HC=BC-BH=AD-DF=AF,
    ∵AD∥BC,
    ∴四边形AHCF是平行四边形,
    ∴AH∥CF,
    ∴∠BMH=∠BGC=90°,
    ∴点M是AH的中点,
    ∵AB=AE,
    ∴△ABE是等腰三角形,
    ∴点M是BE的中点,
    ∵AB=10,CF=12,
    ∴AH=CF=10,
    ∴AM=6,
    在△AMB中,由勾股定理得:
    BM=102−62=8,
    ∴BE=16.
    【点睛】本题考查了尺规作图,平行四边形的性质和判定,角平分线的性质,等腰三角形的性质以及勾股定理的运用等,综合性较强,平行线+角平分线可推出等腰三角形是本题的重要结论,扎实基础的性质和作图方法是解决本题的关键.
    20.(2022春·江苏宿迁·八年级统考阶段练习)如图,平行四边形ABCD的对角线AC,BD交于点O,AE平分∠BAD,交BC于点E,且∠ADC=60°.
    (1)求证:AB=AE;
    (2)若ABBC=m(0<m<1),AC=43,连接OE;
    ①若m=12,求平行四边ABCD的面积;
    ②设S四边形OECDSΔAOD=k,试求k与m满足的关系.

    【答案】(1)见解析;(2)①163;②m+k=2.
    【分析】(1)根据▱ABCD中,∠ADC=60°,可得△ABE是等边三角形,进而可以证明结论;
    (2)①根据 ABBC=m=12,可得AB=12BC,证明∠BAC=90°,再利用含30度角的直角三角形可得AB的长,进而可得平行四边ABCD的面积; ②根据四边形ABCD是平行四边形,可得S△AOD=S△BOC,S△BOC=12S△BCD,由△ABE是等边三角形,可得BE=AB=mBC,由△BOE的BE边上的高等于△BDC的BC边上的高的一半,底BE等于BC的m倍,设BC边上的高为h,BC的长为b,分别表示出四边形OECD和三角形AOD的面积,进而可得k与m满足的关系.
    【详解】(1)证明:∵四边形ABCD是平行四边形,
    ∴∠ABC=∠ADC=60°,∠BAD=120°,
    ∵AE平分∠BAD,
    ∴∠BAE=∠EAD=60°
    ∴△ABE是等边三角形,
    ∴AB=AE;
    (2)解:①∵ABBC=m=12,
    ∴AB=12BC,
    ∴AE=BE=12BC,
    ∴AE=CE,
    ∵∠ABC=60°,ABBC=12,
    ∴∠ACB=30°,
    ∴∠BAC=90°,
    当AC=43时,AB=4,
    ∴平行四边ABCD的面积=2S△ABC=2×12AB•AC=4×43=163;
    ②∵四边形ABCD是平行四边形,
    ∴S△AOD=S△BOC,S△BOC=12S△BCD,
    ∵△ABE是等边三角形,
    ∴BE=AB=mBC,
    ∵△BOE的BE边上的高等于△BDC的BC边上的高的一半,底BE等于BC的m倍,
    设BC边上的高为h,BC的长为b,
    ∴S△BCD=12×bh,S△OBE=12×ℎ2×mb=mbℎ4,
    ∴S四边形OECD=S△BCD﹣S△OBE=bℎ2﹣mbℎ4=(12﹣m4)bh,
    ∵S△AOD=12×ℎ2×b=bℎ4,
    ∴S四边形OECDS△AOD=12−m4bℎ×4bℎ=k,
    ∴2﹣m=k,
    ∴m+k=2.
    【点睛】本题主要考查了平行四边形的性质,以及等边三角形的判定与性质,解决本题的关键是要熟练掌握平行四边形的性质,以及等边三角形的判定与性质.
    21.(2022春·江苏无锡·八年级统考期中)如图,在四边形ABCD中,AD//BC,∠B=90∘,AD=16cm,AB=12cm,BC=21cm.动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动时间为t(秒).

    (1)当0

    相关试卷

    初中数学苏科版八年级下册9.3 平行四边形复习练习题:

    这是一份初中数学苏科版八年级下册9.3 平行四边形复习练习题,文件包含专题911平行四边形的性质与判定大题专练重难点培优八下苏科-拔尖特训2022-2023学年八年级数学下册尖子生培优必刷题原卷版苏科版docx、专题911平行四边形的性质与判定大题专练重难点培优八下苏科-拔尖特训2022-2023学年八年级数学下册尖子生培优必刷题解析版苏科版docx等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。

    专题10.7分式的化简求值大题专练(重难点 30题,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】:

    这是一份专题10.7分式的化简求值大题专练(重难点 30题,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题107分式的化简求值大题专练重难点培优30题八下苏科-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题107分式的化简求值大题专练重难点培优30题八下苏科-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。

    专题9.14正方形的性质与判定大题专练(重难点 ,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】:

    这是一份专题9.14正方形的性质与判定大题专练(重难点 ,八下苏科)- 2022-2023学年八年级数学下册 必刷题【苏科版】,文件包含专题914正方形的性质与判定大题专练重难点培优八下苏科-2022-2023学年八年级数学下册必刷题解析版苏科版docx、专题914正方形的性质与判定大题专练重难点培优八下苏科-2022-2023学年八年级数学下册必刷题原卷版苏科版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map