高中数学人教B版 (2019)必修 第二册4.3 指数函数与对数函数的关系练习
展开八 指数函数与对数函数的关系
基础练习
一、选择题(每小题5分,共25分)
1.设f (x)=3x+9,则f-1(x)的定义域是 ( )
A.(0,+∞) B.(9,+∞)
C.(10,+∞) D.(-∞,+∞)
2.将y=2x的图象作如下平移,再作关于直线y=x对称的图象,可得到函数y=log2(x+1)的图象,其正确的平移是 ( )
A.先向上平移一个单位长度
B.先向右平移一个单位长度
C.先向左平移一个单位长度
D.先向下平移一个单位长度
3.已知函数g(x)=f(x)+x2是奇函数,当x>0时,函数f(x)的图象与函数y=log2x的图象关于y=x对称,则g(-2)= ( )
A.-7 B.-8 C.-9 D.-10
4.已知函数f(x)=log3(x-2)的定义域为A,则函数g(x)=(x∈A)的值域为 ( )
A.(-∞,0) B.(-∞,1)
C.[1,+∞) D.(1,+∞)
5.(多选题)以下命题错误的是 ( )
A.函数y=x的反函数是y=logx.
B.函数y=log3x的反函数的值域为R.
C.函数y=ex的图象与y=lg x的图象关于y=x对称.
D.函数f(x)=x的反函数为g(x),那么g(x)的图象一定过点(1,0).
二、填空题(每小题5分,共10分)
6.若函数y=的图象关于直线y=x对称,则a的值为 .
7.已知函数y=ax+b的图象过点(1,4),其反函数的图象过点(2,0),则a= ,b= .
三、解答题(每小题10分,共20分)
8.求函数y=2x+1(x<0)的反函数.
9.已知f(x)=loga(ax-1)(a>0,且a≠1).
解方程f(2x)=f-1(x).
提升练习
一、选择题(每小题5分,共20分)
1.若函数y=f(x)是函数y=ax(a>0且a≠1)的反函数,且f(2)=1,则 f(8)= ( )
A.3 B. C.-3 D.-
2.设方程x+log2x=2的解为x1,x+2x=2的解为x2,则x1+x2= ( )
A. B.1 C. D.2
3.函数f(x)=log3(2x-1)的反函数y=f-1(x)的值域为 ( )
A.(1,+∞) B.[0,+∞)
C.(0,+∞) D.[1,+∞)
4.(多选题)已知函数f(x)=x的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|),则关于h(x)有下列命题,正确的有 ( )
A.h(x)的图象关于原点对称
B.h(x)为偶函数
C.h(x)的最小值为0
D.h(x)在(0,1)上为减函数
二、填空题(每小题5分,共20分)
5.若函数f(x)的图象和g(x)=ln(2x)的图象关于直线x-y=0对称,则f(x)的解析式为 .
6.已知函数y=f(x)在定义域R上是单调函数,值域为(-∞,0),满足f(-1)=-,且对于任意x,y∈R,都有f(x+y)=-f(x)f(y).y=f(x)的反函数为y=f-1(x),若将y=kf(x)(其中常数k>0)的反函数的图象向上平移1个单位,将得到函数y=f-1(x)的图象,则实数k的值为 .
7.设函数g(x)的图象与f (x)=x∈R,且x≠-的图象关于直线y=x对称,则g(2)的值等于 .
8.设函数f(x)=logax(a>0,a≠1)满足f(27)=3,则a= ,f-1(log92)= .
三、解答题(每小题10分,共20分)
9.已知函数f(x)=ax-k的图象过点(1,3),其反函数y=f-1(x)的图象过点(2,0),求f(x)的表达式.
10.设a>0,且a≠1,函数y=有最大值,求函数f(x)=loga(3-2x)的单调区间.
数学必修 第二册4.3 指数函数与对数函数的关系练习: 这是一份数学必修 第二册4.3 指数函数与对数函数的关系练习,共18页。试卷主要包含了3指数函数与对数函数的关系等内容,欢迎下载使用。
模块素养检测 同步练习-2022-2023学年高一上学期数学人教B版(2019)必修第二册: 这是一份人教B版 (2019)必修 第二册全册综合同步练习题,文件包含模块素养检测同步练习教师版-2022-2023学年高一上学期数学人教B版2019必修第二册docx、模块素养检测同步练习学生版-2022-2023学年高一上学期数学人教B版2019必修第二册docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
高中数学人教B版 (2019)必修 第二册6.1.3 向量的减法一课一练: 这是一份高中数学人教B版 (2019)必修 第二册6.1.3 向量的减法一课一练,文件包含二十五向量的减法同步练习教师版-2022-2023学年高一上学期数学人教B版2019必修第二册docx、二十五向量的减法同步练习学生版-2022-2023学年高一上学期数学人教B版2019必修第二册docx等2份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。