七年级下册数学前三章复习试卷附答案
展开
这是一份七年级下册数学前三章复习试卷附答案,共53页。试卷主要包含了如图,A,B的坐标为,点P,如图,已知棋子“车”的坐标为,如图,在平面直角坐标系上有点A,的平方根是等内容,欢迎下载使用。
七年级下册数学前三章复习试卷附答案
一.选择题(共14小题)
1.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2 B.3 C.4 D.5
2.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)
3.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3) B.(3,11) C.(11,9) D.(9,11)
4.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是( )
A.(2011,0) B.(2011,1) C.(2011,2) D.(2010,0)
5.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )
A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)
6.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2) B.(3,3) C.(4,3) D.(3,2)
7.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )
A.(1012,1011) B.(1009,1008)
C.(1010,1009) D.(1011,1010)
8.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)
9.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.33 D.0.1333
10.的平方根是( )
A.±4 B.4 C.±2 D.+2
11.下列说法:
①任何数都有算术平方根;
②一个数的算术平方根一定是正数;
③a2的算术平方根是a;
④(π﹣4)2的算术平方根是π﹣4;
⑤算术平方根不可能是负数,
其中,不正确的有( )
A.2个 B.3个 C.4个 D.5个
12.若x、y都是实数,且,则xy的值为( )
A.0 B. C.2 D.不能确定
13.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=( )
A.20° B.60° C.30° D.45°
14.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=5,DO=2,平移距离为3,则阴影部分面积为( )
A.6 B.12 C.24 D.18
二.填空题(共7小题)
15.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 .
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 .
17.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为 .
18.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是 .
19.已知:(x2+y2+1)2﹣4=0,则x2+y2= .
20.如果的平方根等于±2,那么a= .
21.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C= 度.
三.解答题(共25小题)
22.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.
(1)填空:a= ,b= ;
(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;
(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.
23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.
(1)写出A′、B′、C′的坐标;
(2)求出△ABC的面积;
(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.
24.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
A( , )、B( , )
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( , )、B′( , )、C′( , ).
(3)△ABC的面积为 .
25.先阅读下列一段文字,再解答问题
已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|
(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;
(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;
(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.
26.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
27.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.
(1)填写下列各点的坐标:
A1( , ),
A3( , ),
A12( , );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
28.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
29.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.
(1)写出点C,D的坐标并求出四边形ABDC的面积.
(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.
30.阅读下面的文字,解答问题:
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:
∵<<,即2<<3,
∴的整数部分为2,小数部分为(﹣2).
请解答:(1)的整数部分是 ,小数部分是 .
(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;
(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.
31.求下列各式中的x.
(1)4x2﹣16=0
(2)27(x﹣3)3=﹣64.
32.正数x的两个平方根分别为3﹣a和2a+7.
(1)求a的值;
(2)求44﹣x这个数的立方根.
33.有理数a和b对应点在数轴上如图所示:
(1)大小比较:a、﹣a、b、﹣b,用“<”连接;
(2)化简:|a+b|﹣|a﹣b|﹣2|b﹣1|.
34.已知有理数a,b,c在数轴上的位置如图所示.
(1)用“>”或“<”填空:
b﹣a 0,c﹣b 0,a+b 0;
(2)化简:|b﹣a|﹣|c﹣b|+|a+b|.
35.[阅读材料]
∵<<,即2<<3,
∴1<﹣1<2,
∴﹣1的整数部分为1,
∴﹣1的小数部分为(﹣1)﹣1=﹣2.
(1)填空:的小数部分是 .
(2)已知a是的整数部分,b是的小数部分,求代数式(﹣a)+(b+4)的值.
36.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF= 度,∠FOH= 度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)
37.已知直线AB∥CD,
(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 .
(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是 .
(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
38.已知AB∥CD,AM平分∠BAP,CM平分∠PCD.
(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;
(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.
39.探究题:
(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.
(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.
(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.
(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.
40.(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数;
(2)如图2,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你写出∠CPD、∠α、∠β间的数量关系,并说明理由.
41.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.
证明:∵AF⊥CE(已知)
∴∠AOE=90°( )
又∵∠1=∠B( )
∴ ( )
∴∠AFB=∠AOE( )
∴∠AFB=90°( )
又∵∠AFC+∠AFB+∠2= (平角的定义)
∴∠AFC+∠2=( )°
又∵∠A+∠2=90°(已知)
∴∠A=∠AFC( )
∴ (内错角相等,两直线平行)
42.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数
43.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:
(1)如图1,若∠B=15°,∠BED=90°,则∠D= ;
(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);
(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.
44.已知直线l1∥l2,点A,C分别在l1,l2上,点B在直线l1,l2之间,且∠BCN<∠BAM≤90°.
(1)如图①,求证:∠ABC=∠BAM+∠BCN.
阅读并将下列推理过程补齐完整:
过点B作BG∥NC,因为l1∥l2,
所以AM∥ ( ).
所以∠ABG=∠BAM,∠CBG=∠BCN( ).
所以∠ABC=∠ABG+∠CBG=∠BAM+∠BCN.
(2)如图②,点D,E在直线l1上,且∠DBC=∠BAM,BE平分∠ABC.
求证:∠DEB=∠DBE;
(3)在(2)的条件下,如果∠CBE的平分线BF与直线l1平行,试确定∠BAM与∠BCN之间的数量关系,并说明理由.
45.如图,已知AB⊥BC,若∠1+∠2=90°,且∠2=∠3,则BE与DF平行吗?请说明理由.
46.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
七年级上册数学前三章复习试卷附答案
参考答案与试题解析
一.选择题(共14小题)
1.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )
A.2 B.3 C.4 D.5
【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=0+1=1,b=0+1=1,
故a+b=2.
故选:A.
2.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )
A.(﹣3,0) B.(﹣1,6) C.(﹣3,﹣6) D.(﹣1,0)
【解答】解:根据题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).
故选:A.
3.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是( )
A.(11,3) B.(3,11) C.(11,9) D.(9,11)
【解答】解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.
故选:A.
4.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2011次运动后,动点P的坐标是( )
A.(2011,0) B.(2011,1) C.(2011,2) D.(2010,0)
【解答】解:∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,2),第4次运动到点(4,0),第5次运动到点(5,1)…,
∴运动后点的横坐标等于运动的次数,
第2011次运动后点P的横坐标为2011,
纵坐标以1、0、2、0每4次为一个循环组循环,
∵2011÷4=502…3,
∴第2011次运动后动点P的纵坐标是第503个循环组的第3次运动,与第3次运动的点的纵坐标相同,为2,
∴点P(2011,2).
故选:C.
5.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为( )
A.(3,2) B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)
【解答】解:如图,
棋子“炮”的坐标为(3,﹣2).
故选:C.
6.如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为( )
A.(4,2) B.(3,3) C.(4,3) D.(3,2)
【解答】解:如图,作AM⊥x轴于点M.
∵正三角形OAB的顶点B的坐标为(2,0),
∴OA=OB=2,∠AOB=60°,
∴OM=OA=1,AM=OM=,
∴A(1,),
∴直线OA的解析式为y=x,
∴当x=3时,y=3,
∴A′(3,3),
∴将点A向右平移2个单位,再向上平移2个单位后可得A′,
∴将点B(2,0)向右平移2个单位,再向上平移2个单位后可得B′,
∴点B′的坐标为(4,2),
故选:A.
7.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )
A.(1012,1011) B.(1009,1008)
C.(1010,1009) D.(1011,1010)
【解答】解:因为A1(﹣1,1),A2(2,1),A3(﹣2,2),A4(3,2),A5(﹣3,3),A6(4,3),A7(﹣4,4),A8(5,4)…A2n﹣1(﹣n,n) A2n(n+1,n)(n为正整数)
所以2n=2020,
n=1010
所以A2020(1011,1010)
故选:D.
8.已知a+b>0,ab>0,则在如图所示的平面直角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b) B.(﹣a,b) C.(﹣a,﹣b) D.(a,﹣b)
【解答】解:∵a+b>0,ab>0,∴a>0,b>0.
A、(a,b)在第一象限,因为小手盖住的点在第二象限,故此选项不符合题意;
B、(﹣a,b)在第二象限,因为小手盖住的点在第二象限,故此选项符合题意;
C、(﹣a,﹣b)在第三象限,因为小手盖住的点在第二象限,故此选项不符合题意;
D、(a,﹣b)在第四象限,因为小手盖住的点在第二象限,故此选项不符合题意;
故选:B.
9.如果≈1.333,≈2.872,那么约等于( )
A.28.72 B.0.2872 C.13.33 D.0.1333
【解答】解:∵≈1.333,
∴=≈1.333×10=13.33.
故选:C.
10.的平方根是( )
A.±4 B.4 C.±2 D.+2
【解答】解:=4,±=±2,
故选:C.
11.下列说法:
①任何数都有算术平方根;
②一个数的算术平方根一定是正数;
③a2的算术平方根是a;
④(π﹣4)2的算术平方根是π﹣4;
⑤算术平方根不可能是负数,
其中,不正确的有( )
A.2个 B.3个 C.4个 D.5个
【解答】解:根据平方根概念可知:
①负数没有平方根,故此选项错误;
②反例:0的算术平方根是0,故此选项错误;
③当a<0时,a2的算术平方根是﹣a,故此选项错误;
④(π﹣4)2的算术平方根是4﹣π,故此选项错误;
⑤算术平方根不可能是负数,故此选项正确.
所以不正确的有4个.
故选:C.
12.若x、y都是实数,且,则xy的值为( )
A.0 B. C.2 D.不能确定
【解答】解:要使根式有意义,
则2x﹣1≥0,1﹣2x≥0,
解得x=,
∴y=4,
∴xy=2.
故选:C.
13.如图,AB∥CD,EF⊥AB于E,EF交CD于F,已知∠1=60°,则∠2=( )
A.20° B.60° C.30° D.45°
【解答】解:∵AB∥CD,
∴∠3=∠1=60°(两直线平行,同位角相等),
∵EF⊥AB于E,
∴∠2=90°﹣60°=30°,
故选:C.
14.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=5,DO=2,平移距离为3,则阴影部分面积为( )
A.6 B.12 C.24 D.18
【解答】解:∵△ABC沿B到C的方向平移到△DEF的位置,
∴S△ABC=S△DEF,
∴S阴影部分+S△OEC=S梯形ABEO+S△OEC,
∴S阴影部分=S梯形ABEO=×(5﹣2+5)×3=12.
故选:B.
二.填空题(共7小题)
15.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 (﹣3,5) .
【解答】解:∵|x|=3,y2=25,
∴x=±3,y=±5,
∵第二象限内的点P(x,y),
∴x<0,y>0,
∴x=﹣3,y=5,
∴点P的坐标为(﹣3,5),
故答案为:(﹣3,5).
16.如图,已知A1(1,0),A2(1,﹣1),A3(﹣1,﹣1),A4(﹣1,1),A5(2,1),…,则点A2010的坐标是 (503,﹣503) .
【解答】解:易得4的整数倍的各点如A4,A8,A12等点在第二象限,
∵2010÷4=502…2;
∴A2010的坐标在第四象限,
横坐标为(2010﹣2)÷4+1=503;纵坐标为﹣503,
∴点A2010的坐标是(503,﹣503).
故答案为:(503,﹣503).
17.如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为 (5,﹣5) .
【解答】解:∵=5,
∴A20在第四象限,
∵A4所在正方形的边长为2,
A4的坐标为(1,﹣1),
同理可得:A8的坐标为(2,﹣2),A12的坐标为(3,﹣3),
∴A20的坐标为(5,﹣5),
故答案为:(5,﹣5).
18.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是 (6,5) .
【解答】解:观察图表可知:每排的数字个数就是排数;且奇数排从左到右,从小到大,而偶数排从左到右,从大到小.
实数15=1+2+3+4+5,
则17在第6排,第5个位置,即其坐标为(6,5).
故答案为:(6,5).
19.已知:(x2+y2+1)2﹣4=0,则x2+y2= 1 .
【解答】解:∵(x2+y2+1)2﹣4=0,
∴(x2+y2+1)2=4,
∵x2+y2+1>0,
∴x2+y2+1=2,
∴x2+y2=1.
故答案为:1.
20.如果的平方根等于±2,那么a= 16 .
【解答】解:∵(±2)2=4,
∴=4,
∴a=()2=16.
故答案为:16.
21.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C= 20 度.
【解答】解:∵AE∥BD,∠1=130°,∠2=30°,
∴∠CBD=∠1=130°.
∵∠BDC=∠2,
∴∠BDC=30°.
在△BCD中,∠CBD=130°,∠BDC=30°,
∴∠C=180°﹣130°﹣30°=20°.
三.解答题(共25小题)
22.如图,在平面直角坐标系中,已知A(a,0),B(b,0),其中a,b满足|a+1|+(b﹣3)2=0.
(1)填空:a= ﹣1 ,b= 3 ;
(2)如果在第三象限内有一点M(﹣2,m),请用含m的式子表示△ABM的面积;
(3)在(2)条件下,当m=﹣时,在y轴上有一点P,使得△BMP的面积与△ABM的面积相等,请求出点P的坐标.
【解答】解:(1)∵|a+1|+(b﹣3)2=0,
∴a+1=0且b﹣3=0,
解得:a=﹣1,b=3,
故答案为:﹣1,3;
(2)过点M作MN⊥x轴于点N,
∵A(﹣1,0)B(3,0)
∴AB=1+3=4,
又∵点M(﹣2,m)在第三象限
∴MN=|m|=﹣m
∴S△ABM=AB•MN=×4×(﹣m)=﹣2m;
(3)当m=﹣时,M(﹣2,﹣)
∴S△ABM=﹣2×(﹣)=3,
点P有两种情况:①当点P在y轴正半轴上时,设点p(0,k)
S△BMP=5×(+k)﹣×2×(+k)﹣×5×﹣×3×k=k+,
∵S△BMP=S△ABM,
∴k+=3,
解得:k=0.3,
∴点P坐标为(0,0.3);
②当点P在y轴负半轴上时,设点P(0,n),
S△BMP=﹣5n﹣×2×(﹣n﹣)﹣×5×﹣×3×(﹣n)=﹣n﹣,
∵S△BMP=S△ABM,
∴﹣n﹣=3,
解得:n=﹣2.1
∴点P坐标为(0,﹣2.1),
故点P的坐标为(0,0.3)或(0,﹣2.1).
23.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.
(1)写出A′、B′、C′的坐标;
(2)求出△ABC的面积;
(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.
【解答】解:(1)如图所示:A′(0,4)、B′(﹣1,1)、C′(3,1);
(2)S△ABC=×(3+1)×3=6;
(3)设点P坐标为(0,y),
∵BC=4,点P到BC的距离为|y+2|,
由题意得×4×|y+2|=6,
解得y=1或y=﹣5,
所以点P的坐标为(0,1)或(0,﹣5).
24.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).
(1)写出点A、B的坐标:
A( 2 , ﹣1 )、B( 4 , 3 )
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( 0 , 0 )、B′( 2 , 4 )、C′( ﹣1 , 3 ).
(3)△ABC的面积为 5 .
【解答】解:(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).
(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.
25.先阅读下列一段文字,再解答问题
已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|
(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;
(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;
(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.
【解答】解:(1)依据两点间的距离公式,可得AB==13;
(2)当点A,B在平行于y轴的直线上时,AB=|﹣1﹣5|=6;
(3)AB与AC相等.理由:
∵AB==5;
AC==5;
BC=|3﹣(﹣3)|=6.
∴AB=AC.
26.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;
(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.
【解答】解:(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0
可得:a=2,b=3,c=4;
(2)∵×2×3=3,×2×(﹣m)=﹣m,
∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m
(3)因为×4×3=6,
∵S四边形ABOP=S△ABC
∴3﹣m=6,
则 m=﹣3,
所以存在点P(﹣3,)使S四边形ABOP=S△ABC.
27.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图所示.
(1)填写下列各点的坐标:
A1( 0 , 1 ),
A3( 1 , 0 ),
A12( 6 , 0 );
(2)写出点A4n的坐标(n是正整数);
(3)指出蚂蚁从点A100到A101的移动方向.
【解答】解:(1)A1(0,1),A3(1,0),A12(6,0);
(2)当n=1时,A4(2,0),
当n=2时,A8(4,0),
当n=3时,A12(6,0),
所以A4n(2n,0);
(3)点A100中的n正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0),A101的(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上.
28.如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
【解答】解:(1)由题意得,3﹣b≥0且b﹣3≥0,
解得b≤3且b≥3,
∴b=3,
a=﹣1,
∴A(﹣1,0),B(3,0),
∵点A,B分别向上平移2个单位,再向右平移1个单位,
∴点C(0,2),D(4,2);
∵AB=3﹣(﹣1)=3+1=4,
∴S四边形ABDC=4×2=8;
(2)∵S△PAB=S四边形ABDC,
∴×4•OP=8,
解得OP=4,
∴点P的坐标为(0,4)或(0,﹣4);
(3)=1,比值不变.
理由如下:由平移的性质可得AB∥CD,
如图,过点P作PE∥AB,则PE∥CD,
∴∠DCP=∠CPE,∠BOP=∠OPE,
∴∠CPO=∠CPE+∠OPE=∠DCP+∠BOP,
∴=1,比值不变.
29.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.
(1)写出点C,D的坐标并求出四边形ABDC的面积.
(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.
(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.
【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,
∴点C的坐标为(0,2),点D的坐标为(6,2);
四边形ABDC的面积=2×(4+2)=12;
(2)存在.
设点E的坐标为(x,0),
∵△DEC的面积是△DEB面积的2倍,
∴×6×2=2××|4﹣x|×2,解得x=1或x=7,
∴点E的坐标为(1,0)和(7,0);
(3)当点F在线段BD上,作FM∥AB,如图1,
∵MF∥AB,
∴∠2=∠FOB,
∵CD∥AB,
∴CD∥MF,
∴∠1=∠FCD,
∴∠OFC=∠1+∠2=∠FOB+∠FCD;
当点F在线段DB的延长线上,作FN∥AB,如图2,
∵FN∥AB,
∴∠NFO=∠FOB,
∵CD∥AB,
∴CD∥FN,
∴∠NFC=∠FCD,
∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;
同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.
30.阅读下面的文字,解答问题:
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
又例如:
∵<<,即2<<3,
∴的整数部分为2,小数部分为(﹣2).
请解答:(1)的整数部分是 4 ,小数部分是 ﹣4 .
(2)如果的小数部分为a,的整数部分为b,求a+b﹣的值;
(3)已知:10+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.
【解答】解:(1)∵4<<5,
∴的整数部分是4,小数部分是 ,
故答案为:4,﹣4;
(2)∵2<<3,
∴a=﹣2,
∵3<<4,
∴b=3,
∴a+b﹣=﹣2+3﹣=1;
(3)∵1<3<4,
∴1<<2,
∴11<10+<12,
∵10+=x+y,其中x是整数,且0<y<1,
∴x=11,y=10+﹣11=﹣1,
∴x﹣y=11﹣(﹣1)=12﹣,
∴x﹣y的相反数是﹣12+;
31.求下列各式中的x.
(1)4x2﹣16=0
(2)27(x﹣3)3=﹣64.
【解答】解(1)4x2=16,
x2=4
x=±2;
(2)(x﹣3)3=﹣,
x﹣3=﹣
x=.
32.正数x的两个平方根分别为3﹣a和2a+7.
(1)求a的值;
(2)求44﹣x这个数的立方根.
【解答】解:(1)∵正数x的两个平方根是3﹣a和2a+7,
∴3﹣a+(2a+7)=0,
解得:a=﹣10
(2)∵a=﹣10,
∴3﹣a=13,2a+7=﹣13.
∴这个正数的两个平方根是±13,
∴这个正数是169.
44﹣x=44﹣169=﹣125,
﹣125的立方根是﹣5.
33.有理数a和b对应点在数轴上如图所示:
(1)大小比较:a、﹣a、b、﹣b,用“<”连接;
(2)化简:|a+b|﹣|a﹣b|﹣2|b﹣1|.
【解答】解:(1)根据数轴上点的特点可得:
a<﹣b<b<﹣a;
(2)根据数轴给出的数据可得:
a+b<0,a﹣b<0,b﹣1<0,
则|a+b|﹣|a﹣b|﹣2|b﹣1|=﹣a﹣b﹣(b﹣a)﹣2(1﹣b)=﹣a﹣b﹣b+a﹣2+2b=﹣2.
34.已知有理数a,b,c在数轴上的位置如图所示.
(1)用“>”或“<”填空:
b﹣a < 0,c﹣b < 0,a+b > 0;
(2)化简:|b﹣a|﹣|c﹣b|+|a+b|.
【解答】解:(1)根据有理数a,b,c在数轴上的位置,可得:c<b<0<a,且|a|>|b|,
∴b﹣a<0,c﹣b<0,a+b>0.
故答案为:<,<,>;
(2)由数轴可得,c<b<0<a,|a|>|b|,
∴b﹣a<0,c﹣b<0,a+b>0,
∴|b﹣a|﹣|c﹣b|+|a+b|=﹣(b﹣a)+(c﹣b)+(a+b)=﹣b+a+c﹣b+a+b=2a﹣b+c.
35.[阅读材料]
∵<<,即2<<3,
∴1<﹣1<2,
∴﹣1的整数部分为1,
∴﹣1的小数部分为(﹣1)﹣1=﹣2.
(1)填空:的小数部分是 ﹣9 .
(2)已知a是的整数部分,b是的小数部分,求代数式(﹣a)+(b+4)的值.
【解答】解:(1)∵,
∴9<<10,
∴的整数部分是9,
∴的小数部分是﹣9,
故答案为:﹣9;
(2)∵,
∴4<<5,
∴的整数部分是4,小数部分是﹣4,
∴a=4,b=﹣4,
∴(﹣a)+(b+4)
=﹣4+(﹣4+4)
=﹣4+.
36.【探究】如图①,∠AFH和∠CHF的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.
(1)若∠AFH=60°,∠CHF=50°,则∠EOF= 30 度,∠FOH= 125 度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度数.
【拓展】如图②,∠AFH和∠CHI的平分线交于点O,EG经过点O且平行于FH,分别与AB、CD交于点E、G.若∠AFH+∠CHF=α,直接写出∠FOH的度数.(用含a的代数式表示)
【解答】解:【探究】(1)∵∠AFH=60°,OF平分∠AFH,
∴∠OFH=30°,
又∵EG∥FH,
∴∠EOF=∠OFH=30°;
∵∠CHF=50°,OH平分∠CHF,
∴∠FHO=25°,
∴△FOH中,∠FOH=180°﹣∠OFH﹣∠OHF=125°;
故答案为:30,125;
(2)∵FO平分∠AFH,HO平分∠CHF,
∴∠OFH=∠AFH,∠OHF=∠CHF.
∵∠AFH+∠CHF=100°,
∴∠OFH+∠OHF=(∠AFH+∠CHF)=×100°=50°.
∵EG∥FH,
∴∠EOF=∠OFH,∠GOH=∠OHF.
∴∠EOF+∠GOH=∠OFH+∠OHF=50°.
∵∠EOF+∠GOH+∠FOH=180°,
∴∠FOH=180°﹣(∠EOF+∠GOH )=180°﹣50°=130°.
【拓展】∵∠AFH和∠CHI的平分线交于点O,
∴∠OFH=∠AFH,∠OHI=∠CHI,
∴∠FOH=∠OHI﹣∠OFH
=(∠CHI﹣∠AFH)
=(180°﹣∠CHF﹣∠AFH)
=(180°﹣α)
=90°﹣α.
37.已知直线AB∥CD,
(1)如图1,点E在直线BD上的左侧,直接写出∠ABE,∠CDE和∠BED之间的数量关系是 ∠ABE+∠CDE=∠BED .
(2)如图2,点E在直线BD的左侧,BF,DF分别平分∠ABE,∠CDE,直接写出∠BFD和∠BED的数量关系是 ∠BFD=∠BED .
(3)如图3,点E在直线BD的右侧BF,DF仍平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由.
【解答】解:(1)如图1,作EF∥AB,,
∵直线AB∥CD,
∴EF∥CD,
∴∠ABE=∠1,∠CDE=∠2,
∴∠ABE+∠CDE=∠1+∠2=∠BED,
即∠ABE+∠CDE=∠BED.
(2)如图2,,
∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠ABF+∠CDF=∠ABE+∠CDE=(∠ABE+∠CDE)
由(1),可得
∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)
∠BED=∠ABE+∠CDE,
∴∠BFD=∠BED.
(3)如图3,过点E作EG∥CD,,
∵AB∥CD,EG∥CD,
∴AB∥CD∥EG,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠CDE+∠BED=360°,
由(1)知,∠BFD=∠ABF+∠CDF,
又∵BF,DF分别平分∠ABE,∠CDE,
∴∠ABF=∠ABE,∠CDF=∠CDE,
∴∠BFD=(∠ABE+∠CDE),
∴2∠BFD+∠BED=360°.
故答案为:∠ABE+∠CDE=∠BED、∠BFD=∠BED.
38.已知AB∥CD,AM平分∠BAP,CM平分∠PCD.
(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;
(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.
【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,
则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),
连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,
所以∠APC=∠AMC+∠MAP+∠MCP,
所以∠APC=∠AMC+∠APC,
所以∠APC=2∠AMC=120°.
(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,
则AB∥PQ∥MN∥CD,
∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,
∵AM平分∠BAP,CM平分∠PCD,
∴∠BAP=2∠BAM,∠DCP=2∠DCM,
∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.
39.探究题:
(1)如图1,若AB∥CD,则∠B+∠D=∠E,你能说明理由吗?
(2)反之,若∠B+∠D=∠E,直线AB与直线CD有什么位置关系?简要说明理由.
(3)若将点E移至图2的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.
(4)若将点E移至图3的位置,此时∠B、∠D、∠E之间有什么关系?直接写出结论.
(5)在图4中,AB∥CD,∠E+∠G与∠B+∠F+∠D之间有何关系?直接写出结论.
【解答】解:(1)如图1,作EF∥AB,,
∵AB∥CD,
∴∠B=∠1,
∵AB∥CD,EF∥AB,
∴EF∥CD,
∴∠D=∠2,
∴∠B+∠D=∠1+∠2,
又∵∠1+∠2=∠E,
∴∠B+∠D=∠E.
(2)如图2,作EF∥AB,,
∵EF∥AB,
∴∠B=∠1,
∵∠E=∠1+∠2=∠B+∠D,
∴∠D=∠2,
∴EF∥CD,
又∵EF∥AB,
∴AB∥CD.
(3)如图3,过E作EF∥AB,,
∵EF∥AB,
∴∠BEF+∠B=180°,
∵EF∥CD,
∴∠D+∠DEF=180°,
∵∠BEF+∠DEF=∠E,
∴∠E+∠B+∠D=180°+180°=360°.
(4)如图4,,
∵AB∥CD,
∴∠B=∠BFD,
∵∠D+∠E=∠BFD,
∴∠D+∠E=∠B.
(5)如图5,作EM∥AB,FN∥AB,GP∥AB,,
又∵AB∥CD,
∴∠B=∠1,∠2=∠3,∠4=∠5,∠6=∠D,
∴∠1+∠2+∠5+∠6=∠B+∠3+∠4+∠D;
∵∠1+∠2=∠E,∠5+∠6=∠G,∠3+∠4=∠F,
∴∠E+∠G=∠B+∠F+∠D.
40.(1)如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数;
(2)如图2,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你写出∠CPD、∠α、∠β间的数量关系,并说明理由.
【解答】解:(1)如图1,过点P作GH∥AB.
∴∠BAP+∠APH=180°.
∴∠APH=180°﹣∠BAP=180°﹣130°=50°
∵AB∥CD,GH∥AB.
∴CD∥GH.
∴∠PCD+∠HPC=180°.
∴∠HPC=180°﹣∠PCD=180°﹣120°=60°.
∴∠APC=∠HPC+∠APH=60°+50°=110°.
(2)如图2,过点P作EF∥AD.
∴∠ADP=∠DPF,即∠α=∠DPF.
∵EF∥AD,AD∥BC,
∴EF∥BC.
∴∠FPC=∠PCB,即∠FPC=∠β.
∴∠CPD=∠DPF+∠CPF=∠α+∠β.
∴∠CPD=∠α+∠β.
(3)当P在A的左侧,如图3.
∵AD∥BC,
∴∠DKC=∠BCP=∠β.
又∵∠DKC=∠CPD+∠ADP,
∴∠β=∠CPD+∠α,即∠CPD=∠β﹣∠α.
当P在B的右侧,如图4.
∵AD∥BC,
∴∠ADP=∠DQC=∠α.
又∵∠DQC=∠CPD+∠BCP,
∴∠α=∠CPD+∠β.
∴∠CPD=∠α﹣∠β.
41.如图,点E、F分别在AB、CD上,AF⊥CE于点O,∠1=∠B,∠A+∠2=90°,求证:AB∥CD.请填空.
证明:∵AF⊥CE(已知)
∴∠AOE=90°( 垂直的定义 )
又∵∠1=∠B( 已知 )
∴ CE∥BF ( 同位角相等,两直线平行 )
∴∠AFB=∠AOE( 两直线平行,同位角相等 )
∴∠AFB=90°( 等量代换 )
又∵∠AFC+∠AFB+∠2= 180° (平角的定义)
∴∠AFC+∠2=( 90 )°
又∵∠A+∠2=90°(已知)
∴∠A=∠AFC( 同角的余角相等 )
∴ AB∥CD (内错角相等,两直线平行)
【解答】证明:∵AF⊥CE(已知),
∴∠AOE=90°(垂直的定义).
又∵∠1=∠B(已知),
∴CE∥BF(同位角相等,两直线平行),
∴∠AFB=∠AOE(两直线平行,同位角相等),
∴∠AFB=90°(等量代换).
又∵∠AFC+∠AFB+∠2=180°(平角的定义),
∴∠AFC+∠2=(90)°.
又∵∠A+∠2=90°(已知),
∴∠A=∠AFC(同角的余角相等),
∴AB∥CD(内错角相等,两直线平行).
故答案为:垂直的定义;已知;CE∥BF;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;180°;90;同角的余角相等;AB∥CD.
42.如图,已知∠1+∠2=180°,∠DEF=∠A,∠BED=60°,求∠ACB的度数
【解答】解:∵∠1+∠2=180°,∠1+∠DFE=180°,
∴∠2=∠DFE,
∴AB∥EF,
∴∠BDE=∠DEF,
又∵∠DEF=∠A,
∴∠BDE=∠A.
∴DE∥AC,
∴∠ACB=∠DEB=60°.
43.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:
(1)如图1,若∠B=15°,∠BED=90°,则∠D= 75° ;
(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);
(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.
【解答】解:(1)过E作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∵∠B=15°,
∴∠BEF=15°,
又∵∠BED=90°,
∴∠DEF=75°,
∵EF∥CD,
∴∠D=75°,
故答案为:75°;
(2)过E作EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠B+∠BEF+∠DEF+∠D=360°,
又∵∠B=α,∠D=β,
∴∠BED=∠BEF+∠DEF=360°﹣α﹣β,
故答案为:∠BED=360°﹣α﹣β;
(3)猜想:∠BEC=180°﹣α+β.
证明:过点E作EF∥AB,
则∠BEF=180°﹣∠B=180°﹣α,
∵AB∥EF,AB∥CD,
∴EF∥CD,
∴∠CEF=∠C=β,
∴∠BEC=∠BEF+∠CEF=180°﹣α+β.
44.已知直线l1∥l2,点A,C分别在l1,l2上,点B在直线l1,l2之间,且∠BCN<∠BAM≤90°.
(1)如图①,求证:∠ABC=∠BAM+∠BCN.
阅读并将下列推理过程补齐完整:
过点B作BG∥NC,因为l1∥l2,
所以AM∥ BG ( 平行于同一条直线的两条直线平行 ).
所以∠ABG=∠BAM,∠CBG=∠BCN( 两直线平行,内错角相等 ).
所以∠ABC=∠ABG+∠CBG=∠BAM+∠BCN.
(2)如图②,点D,E在直线l1上,且∠DBC=∠BAM,BE平分∠ABC.
求证:∠DEB=∠DBE;
(3)在(2)的条件下,如果∠CBE的平分线BF与直线l1平行,试确定∠BAM与∠BCN之间的数量关系,并说明理由.
【解答】(1)解:如图①,过点B作BG∥MC,因为l1∥l2,
所以AM∥BG(平行于同一条直线的两条直线平行).
所以∠ABG=∠BAM,∠CBG=∠BCN(两直线平行,内错角相等).
所以∠ABC=∠ABG+∠CBG=∠BAM+∠BCN.
故答案为:BG,平行于同一条直线的两条直线平形,两直线平行,内错角相等;
(2)证明:如图②,过点B作BG∥NC,因为l1∥l2,
所以AM∥BG,
所以∠DEB=∠EBG,∠CBG=∠BCN,
由(1)知:∠ABC=∠BAM+∠BCN.
又∠DBC=∠BAM,
所以∠ABC=∠DBC+∠BCN.
因为∠ABC=∠ABD+∠DBC.
所以∠ABD=∠BCN,
所以∠ABD=∠CBG,
因为BE平分∠ABC.
所以∠ABE=∠EBC,
所以∠DBE=∠EBG,
所以∠DEB=∠DBE;
(3)解:∠BAM=3∠BCN,理由如下:
因为∠DBC=∠DBE+∠EBF+∠FBC,BF∥AM,
所以∠EBF=∠DEB,
因为BF平分∠CBE,
所以∠CBF=∠EBF,
由(2)知:∠DEB=∠DBE,
所以∠DBC=3∠FBC,
因为CN∥l1,
所以CN∥BF,
所以∠FBC=∠BCN,∠DBC=3∠BCN,
而∠BAM=∠DBC,
所以∠BAM=3∠BCN.
45.如图,已知AB⊥BC,若∠1+∠2=90°,且∠2=∠3,则BE与DF平行吗?请说明理由.
【解答】解:BE∥DF,理由:
∵AB⊥BC,
∴∠ABC=90°,即∠3+∠4=90°.
又∵∠1+∠2=90°,且∠2=∠3,
∴∠1=∠4(等角的余角相等),
∴BE∥DF.
46.如图,直线CB∥OA,∠C=∠A=112°,E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数;
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
【解答】解:(1)∵CB∥OA,
∴∠AOC=180°﹣∠C=180°﹣112°=68°,
∵OE平分∠COF,
∴∠COE=∠EOF,
∵∠FOB=∠AOB,
∴∠EOB=∠EOF+∠FOB=∠AOC=×68°=34°;
(2)∠OBC:∠OFC的值不变.
∵CB∥OA,
∴∠AOB=∠OBC,
∵∠FOB=∠AOB,
∴∠FOB=∠OBC,
∴∠OFC=∠FOB+∠OBC=2∠OBC,
∴∠OBC:∠OFC=1:2,是定值;
(3)在△COE和△AOB中,
∵∠OEC=∠OBA,∠C=∠OAB,
∴∠COE=∠AOB,
∴OB、OE、OF是∠AOC的四等分线,
∴∠COE=∠AOC=×68°=17°,
∴∠OEC=180°﹣∠C﹣∠COE=180°﹣112°﹣17°=51°,
故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=51°.
相关试卷
这是一份2024年七年级下册数学期末复习试卷附解析,共45页。试卷主要包含了的平方根为等内容,欢迎下载使用。
这是一份2024莲花中学北校区八(下)数学前三章测试卷无答案,共4页。
这是一份2023年人教版七年级下册数学期末复习试卷附答案,共45页。试卷主要包含了能与数轴上的点一一对应的是,如图,A,B的坐标为,如图,已知棋子“车”的坐标为等内容,欢迎下载使用。