搜索
    上传资料 赚现金
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)
    立即下载
    加入资料篮
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)01
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)02
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)03
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)04
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)05
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)06
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)07
    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)08
    还剩52页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析)

    展开
    这是一份新高考数学一轮复习讲练测课件第6章§6.3等比数列 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,同一个,aGb,a1qn-1,aman=apaq,S2n-Sn,S3n-S2n,N=M+3等内容,欢迎下载使用。

    1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.
    1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母q(q≠0)表示.(2)等比中项:如果在a与b中间插入一个数G,使 成等比数列,那么G叫做a与b的等比中项,此时,G2= .
    2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an= .(2)等比数列通项公式的推广:an=amqn-m.(3)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=________
    = .
    3.等比数列性质(1)若m+n=p+q,则 ,其中m,n,p,q∈N*.特别地,若2w=m+n,则 ,其中m,n,w∈N*.(2)ak,ak+m,ak+2m,…仍是等比数列,公比为 (k,m∈N*).
    (4)等比数列{an}的前n项和为Sn,则Sn, , 仍成等比数列,其公比为qn.(n为偶数且q=-1除外)
    1.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.2.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).3.数列{an}是等比数列,Sn是其前n项和.
    判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a,b,c成等比数列的充要条件是b2=ac.(  )(2)当公比q>1时,等比数列{an}为递增数列.(  )(3)等比数列中所有偶数项的符号相同.(  )(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(  )
    1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
    若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.
    2.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6等于A.31 B.32 C.63 D.64
    根据题意知,等比数列{an}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.
    3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为____________.
    1,3,9或9,3,1
    ∴这三个数为1,3,9或9,3,1.
    例1 (1)(2022·全国乙卷)已知等比数列{an}的前3项和为168,a2-a5=42,则a6等于A.14 B.12 C.6 D.3
    方法一 设等比数列{an}的公比为q,易知q≠1.
    所以a6=a1q5=3,故选D.
    方法二 设等比数列{an}的公比为q,
    (2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一
    设第一个音的频率为a,相邻两个音之间的频率之比为q,那么an=aqn-1,根据最后一个音的频率是最初那个音的2倍,得a13=2a=aq12,即q= ,
    等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.
    跟踪训练1 (1)设正项等比数列{an}的前n项和为Sn,若S2=3,S4=15,则公比q等于A.2   B.3   C.4   D.5
    ∵S2=3,S4=15,∴q≠1,
    (2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的 倍C.M>3D.N<7
    设该等比数列为{an},公比为q,则a1=1,a13=2,
    插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,
    即证 >4,
    所以 >5,
    所以-1- >4,即M>4,
    所以N=M+3>7,故D错误.
    例2 已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等比数列;②数列{Sn+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.
    选①②作为条件证明③:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),
    解得q=2,所以a2=2a1.
    选①③作为条件证明②:因为a2=2a1,{an}是等比数列,所以公比q=2,
    选②③作为条件证明①:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;
    当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,an=Sn-Sn-1=Aqn-2(q-1)=A·2n-2=a1·2n-1,
    所以{an}为等比数列.
    (3)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
    跟踪训练2 在数列{an}中, +2an+1=anan+2+an+an+2,且a1=2,a2=5.(1)证明:数列{an+1}是等比数列;
    所以(an+1+1)2=(an+1)(an+2+1),
    因为a1=2,a2=5,所以a1+1=3,a2+1=6,
    所以数列{an+1}是以3为首项,2为公比的等比数列.
    (2)求数列{an}的前n项和Sn.
    由(1)知,an+1=3·2n-1,所以an=3·2n-1-1,
    ∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,
    又数列{an}为等比数列,等比数列奇数项符号相同,可得a7=3,
    (2)已知正项等比数列{an}的前n项和为Sn且S8-2S4=6,则a9+a10+a11+a12的最小值为______.
    由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,
    当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.
    (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.
    跟踪训练3 (1)(2023·六安模拟)在等比数列{an}中,若a1+a2=16,a3+a4=24,则a7+a8等于A.40 B.36 C.54 D.81
    在等比数列{an}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,
    (2)等比数列{an}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于A.1 B.2 C.3 D.4
    ∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,
    1.(2023·岳阳模拟)已知等比数列{an}满足a5-a3=8,a6-a4=24,则a3等于A.1 B.-1 C.3 D.-3
    设an=a1qn-1,∵a5-a3=8,a6-a4=24,
    2.数列{an}中,a1=2,am+n=aman,若ak+1+ak+2+…+ak+10=215-25,则k等于A.2   B.3   C.4   D.5
    令m=1,则由am+n=aman,得an+1=a1an,
    所以an=2n,所以ak+1+ak+2+…+ak+10=2k (a1+a2+…+a10)
    =215-25=25×(210-1),解得k=4.
    3.若等比数列{an}中的a5,a2 019是方程x2-4x+3=0的两个根,则lg3a1+lg3a2+lg3a3+…+lg3a2 023等于
    由题意得a5a2 019=3,根据等比数列性质知,a1a2 023=a2a2 022=…=a1 011a1 013=a1 012a1 012=3,于是a1 012= ,则lg3a1+lg3a2+lg3a3+…+lg3a2 023=lg3(a1a2a3…a2 023)
    4.(2022·日照模拟)河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1 016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{an},则lg2(a3·a5)的值为A.16 B.12 C.10 D.8
    由题意,得{an}是以2为公比的等比数列,
    ∴lg2(a3·a5)=lg2(8×22×8×24)=12.
    5.(多选)已知{an}是各项均为正数的等比数列,其前n项和为Sn,且{Sn}是等差数列,则下列结论正确的是A.{an+Sn}是等差数列B.{an·Sn}是等比数列
    由{Sn}是等差数列,可得2(a1+a2)=a1+a1+a2+a3,∴a2=a3,∵{an}是各项均为正数的等比数列,∴a2=a2q,可得q=1.∴an=a1>0,∴an+Sn=(n+1)a1,∴数列{an+Sn}是等差数列,因此A正确;
    7.已知Sn是等比数列{an}的前n项和,且an>0,S1+a1=2,S3+a3=22,则公比q=____,S5+a5=______.
    由题意得2a1=2,∴a1=1.
    8.已知数列{an}为等比数列,若数列{3n-an}也是等比数列,则数列{an}的通项公式可以为 ____________________.(写出一个即可)
    an=3n-1(答案不唯一)
    设等比数列{an}的公比为q,令bn=3n-an,则b1=3-a1,b2=32-a1q,b3=33-a1q2,∵{bn}是等比数列,∴ =b1b3,即(32-a1q)2=(3-a1)(33-a1q2),可化为q2-6q+9=0,解得q=3,取a1=1,则an=3n-1.(注:a1的值可取任意非零实数).
    设数列{an}的公比为q,由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1(n∈N*).
    9.等比数列{an}中,a1=1,a5=4a3.(1)求数列{an}的通项公式;
    由Sm=63得(-2)m=-188,此方程没有正整数解.若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.
    (2)记Sn为{an}的前n项和,若Sm=63,求m.
    10.Sn为等比数列{an}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求an及Sn;
    (2)是否存在常数λ,使得数列{Sn+λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由.
    假设存在常数λ,使得数列{Sn+λ}是等比数列.因为S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13,
    11.(多选)在数列{an}中,n∈N*,若= k(k为常数),则称{an}为“等差比数列”,下列关于“等差比数列”的判断正确的是A.k不可能为0B.等差数列一定是“等差比数列”C.等比数列一定是“等差比数列”D.“等差比数列”中可以有无数项为0
    对于A,k不可能为0,正确;对于B,当an=1时,{an}为等差数列,但不是“等差比数列”,错误;对于C,当等比数列的公比q=1时,an+1-an=0,分式无意义,所以{an}不是“等差比数列”,错误;对于D,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.
    12.记Sn为等比数列{an}的前n项和,已知a1=8,a4=-1,则数列{Sn}A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项
    根据题意,等比数列{an}中,a1=8,a4=-1,
    故S1最大,S2最小.
    13.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=_____.
    {bn}有连续四项在{-53,-23,19,37,82}中,bn=an+1,则an=bn-1,{an}有连续四项在{-54,-24,18,36,81}中.又{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项,等比数列各项的绝对值递增或递减,按绝对值由小到大的顺序排列上述数值:18,-24,36,-54,81,
    很明显,-24,36,-54,81是{an}中连续的四项,
    14.记Sn为数列{an}的前n项和,Sn=1-an,记Tn=a1a3+a3a5+…+a2n-1a2n+1,则an=_____,Tn=___________.
    15.将正整数按照如图所示方式排列:试问2 024是表中第____行的第_______个数.
    由题意得第n行有2n-1个数,前10行共有20+2+22+23+24+25
    前11行共有20+2+22+23+24+25+26+27+28+29+210
    故2 024在表中第11行,又表中第11行有210=1 024(个)数,故2 024是表中第11行的第1 001个数.
    16.(2023·泰安模拟)已知等比数列{an}的前n项和为Sn,an>0,4S1+S2=S3.(1)求数列{an}的公比q;
    由4S1+S2=S3,得4a1+a1+a2=a1+a2+a3,整理得4a1=a3,所以4a1=a1q2.因为a1≠0,所以q2=4,由题意得q>0,所以q=2.
    an=a1·2n-1,
    当n≥3时,f(n)单调递增,
    相关课件

    新高考数学一轮复习讲练课件6.3 等比数列及其前n项和(含解析): 这是一份新高考数学一轮复习讲练课件6.3 等比数列及其前n项和(含解析),共41页。

    新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析): 这是一份新高考数学一轮复习讲练测课件第8章§8.5椭圆 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,x轴和y轴,a2=b2+c2,命题点2待定系数法,命题点1离心率,因为点P在椭圆C上,即4c2=m2,又因为0e1等内容,欢迎下载使用。

    新高考数学一轮复习讲练测课件第6章§6.5数列求和 (含解析): 这是一份新高考数学一轮复习讲练测课件第6章§6.5数列求和 (含解析),共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,Sn=,na1q=1,常见的裂项技巧,常用求和公式,当n为奇数时,所以-3≤λ≤1,选择①等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map