所属成套资源:初三数学人教版上册(秋季班)讲义
数学第二十四章 圆24.1 圆的有关性质24.1.1 圆同步测试题
展开这是一份数学第二十四章 圆24.1 圆的有关性质24.1.1 圆同步测试题,文件包含人教版初三数学上册秋季班讲义第7讲圆的有关性质--基础版教师版docx、人教版初三数学上册秋季班讲义第7讲圆的有关性质--基础班学生版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
第7讲 圆的有关性质
知识点1 垂径定理
①弦和直径:
(1)弦:连接圆上任意两点的线段叫做弦.
(2)直径:经过圆心的弦叫做直径。直径等于半径的两倍。
②弧:
(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B为端点的的弧记作
(2)半圆、优弧、劣弧:
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如.
小于半圆的弧叫做劣弧,如。
(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。
③弦心距:
(1)圆心到弦的距离叫做弦心距。
(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。四者有一个相等,则其他三个都相等。圆心到弦的垂线段的长度称为这条弦的弦心距。
④圆的性质:
(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.
在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.
(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。
⑤垂径定理及推论:
(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.
(3)弦的垂直平分线过圆心,且平分弦对的两条弧.
(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.
(5)平行弦夹的弧相等.
⑥同心圆与等圆
(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。如图一,半径为r1与半径为r2的⊙O叫做同心圆。
(图一)
(2)等圆:圆心不同,半径相等的两个圆叫做等圆。如图二中的⊙O 1与⊙O 2的半径都是r,它们是等圆。同圆或者等圆的半径相同。
(图二)
(3)同圆是指同一个圆;等圆、同心圆是指两个及两个以上的圆。
【典例】
1.如图,圆O的弦GH,EF,CD,AB中最短的是
2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是
3.据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为
4.把宽为2cm的刻度尺在圆O上移动,当刻度尺的一边EF与圆O相切于A时,另一边与圆的两个交点处的度数恰好为“2”(C点)和“8”(B点)(单位:cm),求该圆的半径
【方法总结】
1、在遇有求弦长或半径长的问题时,常添加的辅助线是弦心距。
2、在运用垂径定理解决线段长度问题时,一般都与勾股定理复合运用。
【随堂练习】
1.(2019•庐阳区二模)如图,是的直径,弦于点,连接过点作于点,若,,则的长度是
A. B. C. D.
2.(2019•滨州模拟)如图,某下水道的横截面是圆形的,水面的宽度为,是线段的中点,经过圆心交与点,,则直径的长是
A. B. C. D.
3.(2019•黔东南州一模)如图,的直径为,弦为,是弦上一点且不与点、重合.若的长为整数,则符合条件的点有
A.2个 B.3个 C.4个 D.5个
4.(2019•黄冈)如图,一条公路的转弯处是一段圆弧,点是这段弧所在圆的圆心,,点是的中点,且,则这段弯路所在圆的半径为
A. B. C. D.
5.(2019•长沙模拟)如图,为的弦,过点作的垂线,交于点,交于点,已知,,则的半径为
A.3 B.4 C.5 D.6
6.(2019•滨湖区一模)如图,在中,已知弦长为,为的中点,交于点,且,则长为
A. B. C. D.
7.(2019•阳谷县一模)已知在半径为5的中,,是互相垂直且相等的两条弦,垂足为点,且,则弦的长为
A.4 B.6 C.8 D.10
8.(2019•柯桥区模拟)如图,的直径,是的弦,,垂足为,,则的长为
A.6 B.7 C.8 D.9
9.(2018秋•柳州期末)如图,为的弦,半径于点,且,,则的长为
10.(2018秋•海曙区期末)如图,圆半径为,弓形高为,则弓形的弦的长为
A. B. C. D.
知识点2 弧、弦、圆心角、圆周角的关系
与圆有关的角
(1)圆心角:顶点在圆心的角叫圆心角.
圆心角的性质:圆心角的度数等于它所对弧的度数.
(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角。
圆周角的性质:圆周角等于它所对的弧所对的圆心角的一半。
在同圆或等圆中,相等的圆心角或圆周角所对的弧相等,弦也相等。
(3)直径所对的圆周角是直角。
【典例】
1.如图,矩形ABCD的顶点A,B在圆上,BC,AD分别与该圆相交于点E,F,G是的三等分点(>),BG交AF于点H,若的度数为30°,则∠GHF等于
2.如图,AB是⊙O的直径,==,∠COD=38°,则∠AEO的度数是
3.如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是
【方法总结】
1、注意利用同圆中同弧或等弧所对的圆心角相等圆周角也相等,可进行角度转换。
2、注意利用同圆中同弧或等弧所对的圆心角是圆周角的2倍,可进行角度倍数转换。
【随堂练习】
1.(2019•东西湖区模拟)如图,的半径为2,,在上且,若点,,分别为,、上的动点,则的最小值为
A. B. C.1 D.
2.(2019•东台市模拟)如图,是的弦,半径,为圆周上一点,若的度数为,则的度数为
A. B. C. D.
3.(2019•资中县一模)如图,,是的直径,,若,则的度数是
A . B . C . D .
4.(2018秋•邗江区校级月考)下列语句,错误的是
A.直径是弦
B.弦的垂直平分线一定经过圆心
C.相等的圆心角所对的弧相等
D.平分弧的半径垂直于弧所对的弦
5.(2018秋•泉山区校级月考)下列语句,错误的是
A.直径是弦
B.相等的圆心角所对的弧相等
C.弦的垂直平分线一定经过圆心
D.平分弧的半径垂直于弧所对的弦
6.(2018秋•仪征市校级月考)如图, 在中,,,以点为圆心,为半径的圆分别交、于点、点,则弧的度数为
A . B . C . D .
7.(2018秋•新罗区校级期中)如图所示,在中,,,,是上四点,,交于点,,且,下列结论:①;②;③;④,其中正确的有
A.4个 B.3个 C.2个 D.1个
知识点3 圆周角定理及推论
圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.
圆周角的性质:
圆周角等于它所对的弧所对的圆心角的一半.
圆周角的推论:
①同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.
②90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.
③如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.
④圆内接四边形的对角互补;外角等于它的内对角.
【典例】
1.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么BC的长是
2.如图所示,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为
【方法总结】
1、在圆中利用圆的半径处处相等,可迅速构造等腰三角形。
2、利用直径所对的圆周角是直角,可便捷构造直角三角形。
【随堂练习】
1.(2019•温州三模)如图,点A,B,C在⊙O上,若∠ACB=112°,则∠α=( )
A.68° B.112° C.136° D.134°
2.(2019•邵阳县模拟)已知⊙O的直径AB=8cm,点C在⊙O上,且∠BOC=60°,则AC的长为( )
A.4cm B.4cm C.5cm D.2.5cm
3.(2019•广元)如图,AB,AC分别是⊙O的直径和弦,OD⊥AC于点D,连接BD,BC,且AB=10,AC=8,则BD的长为( )
A.2 B.4 C.2 D.4.8
4.(2019•吉林)如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB的度数为( )
A.30° B.45° C.55° D.60°
5.(2019•柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是( )
A.∠B B.∠C C.∠DEB D.∠D
6.(2019•黔东南州一模)如图,BC为⊙O的直径,AB=OB.则∠C的度数为( )
A.30° B.45° C.60° D.90°
7.(2019•宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是( )
A.50° B.55° C.60° D.65°
8.(2019•眉山)如图,⊙O的直径AB垂直于弦CD,垂足是点E,∠CAO=22.5°,OC=6,则CD的长为( )
A.6 B.3 C.6 D.12
9.(2019•江西模拟)如图,BC为直径,∠ABC=35°,则∠D的度数为( )
A.35° B.45° C.55° D.65°
知识点4 圆内接四边形的性质
1.圆内接四边形的对角互补
2.外角等于它的内对角
【典例】
1.如图,点A、B、C、D、E在⊙O上,且的度数为50°,则∠B+∠D的度数为 .
2.如图,已知⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F,若∠E+∠F=70°,则∠A的度数是
3.如图,A、B、C、D四个点在同一个圆上,∠ADC=90°,AB=7cm,CD=5cm,AE=4cm,CF=6cm,则阴影部分的面积为 cm2.
【方法总结】
证明四点共圆的一般方法:
1、逆用同弦所对圆周角相等
2、逆用圆的内接四边形对角互补
【随堂练习】
1.(2018秋•滨江区期末)已知圆内接四边形中,,则的大小是
A. B. C. D.
2.(2019•兰州)如图,四边形内接于,若,则
A. B. C. D.
3.(2019•南昌一模)如图,,,,四个点均在上,,弦的长等于半径,则的度数等于
A. B. C. D.
4.(2019•富顺县三模)四边形内接于圆,、、、的度数比可能是
A. B. C. D.
5.(2018秋•定兴县期末)如图,四边形为圆内接四边形,,则的度数为
A. B. C. D.无法求
二.填空题(共3小题)
6.(2019•海淀区校级三模)如图,点,,,是上的四个点,点是弧的中点,如果,那 .
7.(2019•铜仁市)如图,四边形为的内接四边形,,则的度数为 ;
8.(2019•台州)如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为 .
9.(2018秋•中山区期末)如图,四边形内接于,,求的度数.
综合运用:圆的有关性质
1.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4cm,求球的半径。
2.如图,AB是半圆的直径,O是圆心,C是半圆上一点,D是弧AC中点,OD交弦AC于E,连接BE,若AC=8,DE=2,求
(1)求半圆的半径长;
(2)BE的长度。
3.如图,小明将一块三角板放在⊙O上,三角板的一直角边经过圆心O,测得AC=5cm,AB=3cm,求⊙O的半径。
4.如图,在矩形ABCD中,AB=5,AD=12,以BC为斜边在矩形外部作直角三角形BEC,F为CD的中点,求EF的最大值。
5.如图,已知四边形ADBC是⊙O的内接四边形,AB是直径,AB=10cm,BC=8cm,CD平分∠ACB.
(1)求AC与BD的长;
(2)求四边形ADBC的面积.
6.如图,A、P、B、C是⊙O上四点,∠APC=∠CPB=60°.
(1)判断△ABC的形状并证明你的结论;
(2)当点P位于什么位置时,四边形PBOA是菱形?并说明理由.
(3)求证:PA+PB=PC.
相关试卷
这是一份初中数学人教版九年级上册25.1.2 概率课时作业,文件包含人教版初三数学上册秋季班讲义第9讲概率初步--基础版教师版docx、人教版初三数学上册秋季班讲义第9讲概率初步--基础班学生版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
这是一份初中24.1.1 圆课堂检测,文件包含人教版初三数学上册秋季班讲义第8讲与圆有关的位置关系及计算--基础班教师版docx、人教版初三数学上册秋季班讲义第8讲与圆有关的位置关系及计算--基础班学生版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。
这是一份初中数学人教版九年级上册24.1.1 圆课后练习题,文件包含人教版初三数学上册秋季班讲义第7讲圆的有关性质--提高班教师版docx、人教版初三数学上册秋季班讲义第7讲圆的有关性质--提高班学生版docx等2份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。