![北师大版数学八年级上册勾股定理(提高)知识讲解 (含答案)第1页](http://m.enxinlong.com/img-preview/2/3/14075406/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册勾股定理(提高)知识讲解 (含答案)第2页](http://m.enxinlong.com/img-preview/2/3/14075406/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册勾股定理(提高)知识讲解 (含答案)第3页](http://m.enxinlong.com/img-preview/2/3/14075406/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版数学八年级上册 知识讲解+巩固练习(基础版+提高版) (含答案)
北师大版数学八年级上册勾股定理(提高)知识讲解 (含答案)
展开
这是一份北师大版数学八年级上册勾股定理(提高)知识讲解 (含答案),共6页。
勾股定理(提高)【学习目标】1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.【要点梳理】要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, .要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形. 图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形. ,所以.要点三、勾股定理的作用已知直角三角形的任意两条边长,求第三边;用于解决带有平方关系的证明问题;3. 与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.【典型例题】类型一、与勾股定理有关的证明 1、在△ABC中,AB=AC,D是BC延长线上的点,求证:
【答案与解析】证明:作等腰三角形底边上的高AE
∵AB=AC,AE⊥BC∴BE=EC,∠AEB=∠AEC=90°∴ 【总结升华】解决带有平方关系的问题,关键是找出直角三角形,利用勾股定理进行转化,若没有直角三角形,常常通过作垂线构造直角三角形,再利用勾股定理解题.类型二、与勾股定理有关的线段长2、如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.【答案与解析】解:连接BD,∵等腰直角三角形ABC中,D为AC边上中点,∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,∴∠C=45°,∴∠ABD=∠C,又∵DE丄DF,∴∠FDC+∠BDF=∠EDB+∠BDF,∴∠FDC=∠EDB,在△EDB与△FDC中,∵,∴△EDB≌△FDC(ASA),∴BE=FC=3,∴AB=7,则BC=7,∴BF=4,在Rt△EBF中,EF2=BE2+BF2=32+42,∴EF=5.【总结升华】此题考查的知识点是勾股定理及全等三角形的判定,关键是由已知先证三角形全等,求得BE和BF,再由勾股定理求出EF的长.举一反三:【变式】(2020春•天津校级期中)如图,∠C=30°,PA⊥OA于A,PB⊥OB于B,PA=2,PB=11,求OP的长.【答案】解:∵PA⊥OA,∠C=30°,∴PC=2PA=4,∴BC=BP+PC=11+4=15,∵PB⊥OB,∠C=30°,设OB=x,则OC=2x,在Rt△BOC中,由勾股定理得:x+15=(2x),解得,x=5,即OB=5,∴OP===14.类型三、与勾股定理有关的面积计算3、(2020•丰台区二模)问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积 ;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.【思路点拨】(1)根据图形得出S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC,根据面积公式求出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.【答案与解析】解:(1)△ABC的面积是4.5,理由是:S△ABC=S矩形MONC﹣S△CMA﹣S△AOB﹣S△BNC=4×3﹣×4×1﹣×2×1﹣×3×3=4.5,故答案为:4.5; (2)如图2的△MNP,S△MNP=S矩形MOAB﹣S△MON﹣S△PAN﹣S△MBP=5×3﹣×5×1﹣×2×4﹣×3×1=7,即△MNP的面积是7.【总结升华】本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.举一反三:【变式】如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、6、3、4,则最大正方形E的面积是( ) A.17 B.36 C.77 D.94【答案】C类型四、利用勾股定理解决实际问题4、(2016•贵阳模拟)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【思路点拨】(1)利用勾股定理直接得出AB的长即可;(2)利用勾股定理直接得出BC′的长,进而得出答案.【答案与解析】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.【总结升华】此题主要考查了勾股定理的应用,熟练利用勾股定理是解题关键.举一反三:【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)【答案】解:如图②所示,由题意可得: , 在Rt△AA′B中,根据勾股定理得: 则AB=15. 所以需要爬行的最短路程是15.
![英语朗读宝](http://m.enxinlong.com/img/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)