高中数学高考第十一章 11 1随机事件的概率-学生版(1)
展开
这是一份高中数学高考第十一章 11 1随机事件的概率-学生版(1),共14页。试卷主要包含了概率的几个基本性质等内容,欢迎下载使用。
进门测
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)事件发生频率与概率是相同的.( )
(2)随机事件和随机试验是一回事.( )
(3)在大量重复试验中,概率是频率的稳定值.( )
(4)两个事件的和事件是指两个事件都得发生.( )
(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )
(6)两互斥事件的概率和为1. ( )
作业检查
无
第2课时
阶段训练
题型一 事件关系的判断
例1 (1)从1,2,3,…,7这7个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
上述事件中,是对立事件的是( )
A.① B.②④ C.③ D.①③
(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是eq \f(3,10),那么概率是eq \f(7,10)的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:
①至少有1个白球与至少有1个黄球;
②至少有1个黄球与都是黄球;
③恰有1个白球与恰有1个黄球;
④恰有1个白球与都是黄球.
其中互斥而不对立的事件共有( )
A.0组 B.1组 C.2组 D.3组
题型二 随机事件的频率与概率
例2 某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度的平均保费的估计值.
某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
(1)估计顾客同时购买乙和丙的概率;
(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;
(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?
题型三 互斥事件、对立事件的概率
命题点1 互斥事件的概率
例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是eq \f(1,3),得到黑球或黄球的概率是eq \f(5,12),得到黄球或绿球的概率也是eq \f(5,12),试求得到黑球、黄球和绿球的概率各是多少?
命题点2 对立事件的概率
例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
求:(1)至多2人排队等候的概率;
(2)至少3人排队等候的概率.
第3课时
阶段重难点梳理
1.概率和频率
(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=eq \f(nA,n)为事件A出现的频率.
(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).
2.事件的关系与运算
3.概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)概率的加法公式
如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).
(5)对立事件的概率
若事件A与事件B互为对立事件,则P(A)=1-P(B).
【知识拓展】
互斥事件与对立事件的区别与联系
互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.
重点题型训练
典例 某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)
1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是( )
A.eq \f(4,5) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)
2.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定
3.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( )
A.0.5 B.0.3 C.0.6 D.0.9
4.袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.
作业布置
1.甲、乙两人下棋,两人下成和棋的概率是eq \f(1,2),甲获胜的概率是eq \f(1,3),则甲不输的概率为( )
A.eq \f(5,6) B.eq \f(2,5)
C.eq \f(1,6) D.eq \f(1,3)
2.袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
A.① B.② C.③ D.④
3.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为( )
A.0.7 B.0.65 C.0.35 D.0.5
4.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( )
A.互斥但非对立事件 B.对立事件
C.相互独立事件 D.以上都不对
5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( )
A.0.8 B.0.5 C.0.7 D.0.3
6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:
则取到号码为奇数的卡片的频率是( )
A.0.53 B.0.5 C.0.47 D.0.37
7.在200件产品中,有192件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;
②在这200件产品中任意选出9件,全部是二级品;
③在这200件产品中任意选出9件,不全是二级品.
其中________是必然事件;________是不可能事件;________是随机事件.
8.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是________________.
9.在5张卡片上分别写有数字1,2,3,4,5,然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是________.
10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________.
11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.
12.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:
求该射击队员射击一次:
(1)射中9环或10环的概率;
(2)命中不足8环的概率.
*13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:
(1)取出1球是红球或黑球的概率;
(2)取出1球是红球或黑球或白球的概率.
上年度出险次数
0
1
2
3
4
≥5
保费
0.85a
a
1.25a
1.5a
1.75a
2a
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
商品
顾客人数
甲
乙
丙
丁
100
√
×
√
√
217
×
√
×
√
200
√
√
√
×
300
√
×
√
×
85
√
×
×
×
98
×
√
×
×
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
定义
符号表示
包含关系
如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A(或A⊆B)
相等关系
若B⊇A且A⊇B
A=B
并事件
(和事件)
若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件
(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
互斥事件
若A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
P(A)+P(B)=1
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间
(分钟/人)
1
1.5
2
2.5
3
卡片号码
1
2
3
4
5
6
7
8
9
10
取到次数
13
8
5
7
6
13
18
10
11
9
赔付金额(元)
0
1 000
2 000
3 000
4 000
车辆数(辆)
500
130
100
150
120
命中环数
10环
9环
8环
7环
概率
0.32
0.28
0.18
0.12
相关试卷
这是一份高中数学高考第十一章 11 1随机事件的概率-教师版(1),共20页。试卷主要包含了85a×0,概率的几个基本性质等内容,欢迎下载使用。
这是一份高中数学高考第九章 9 1直线的方程-学生版(1),共10页。试卷主要包含了直线方程的五种形式,直线l等内容,欢迎下载使用。
这是一份高中数学高考第58讲 随机事件的概率与古典概型(讲)(学生版),共10页。试卷主要包含了事件的相关概念,频数、频率和概率,事件的关系与运算,概率的几个基本性质,古典概型等内容,欢迎下载使用。