所属成套资源:初中数学七年级下册讲义(浙教版)
第3章 整式的乘除辅导讲义7:同底数幂的除法 知识讲解
展开同底数幂的除法【学习目标】1. 会用同底数幂的除法性质进行计算.2. 掌握零指数幂和负整数指数幂的意义.3.掌握科学记数法.【要点梳理】要点一、同底数幂的除法法则同底数幂相除,底数不变,指数相减,即(≠0,都是正整数,并且)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算. (2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式.要点二、零指数幂任何不等于0的数的0次幂都等于1.即(≠0)要点诠释:底数不能为0,无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.要点三、负整数指数幂任何不等于零的数的(为正整数)次幂,等于这个数的次幂的倒数,即(≠0,是正整数).引进了零指数幂和负整数指数幂后,指数的范围已经扩大到了全体整数,以前所学的幂的运算性质仍然成立.(、为整数,);(为整数,,) (、为整数,).要点诠释:是的倒数,可以是不等于0的数,也可以是不等于0的代数式.例如(),().要点四、科学记数法的一般形式(1)把一个绝对值大于10的数表示成的形式,其中是正整数,(2)利用10的负整数次幂表示一些绝对值较小的数,即的形式,其中是正整数,.用以上两种形式表示数的方法,叫做科学记数法.【典型例题】类型一、同底数幂的除法 1、计算:(1);(2);(3);(4).【思路点拨】利用同底数幂相除的法则计算.(2)、(4)两小题要注意符号.【答案与解析】解:(1).(2).(3).(4).【总结升华】(1)运用法则进行计算的关键是看底数是否相同.(2)运算中单项式的系数包括它前面的符号.【高清课堂399108 整式的除法 例1】2、计算下列各题:(1) (2)(3) (4)【思路点拨】(1)若被除式、除式的底数互为相反数时,先将底数变为相同底数再计算,尽可能地去变偶次幂的底数,如.(2)注意指数为1的多项式.如的指数为1,而不是0. 【答案与解析】解:(1).(2)(3).(4).【总结升华】底数都是单项式或多项式,把底数作一个整体利用同底数幂的除法法则进行计算.【高清课堂 整式的除法 例2】3、已知,,求的值.【答案与解析】解: .当,时,原式.【总结升华】逆用同底数除法公式,设法把所求式转化成只含,的式子,再代入求值.本题是把除式写成了分数的形式,为了便于观察和计算,我们可以把它再写成除式的形式.举一反三:【变式】(2015春•苏州)已知以=2,=4,=32.则的值为 .【答案】解: ==8,==16,=•÷=8×16÷32=4,故答案为:4.类型二、负整数次幂的运算4、计算:(1);(2).【答案与解析】解:(1);(2).【总结升华】要正确理解负整数指数幂的意义.举一反三:【变式】计算:.【答案】解: 5、 已知,,则的值=________.【答案与解析】解: ∵ ,∴ .∵ ,,∴ ,.∴ .【总结升华】先将变形为底数为3的幂,,,然后确定、的值,最后代值求.举一反三:【变式】计算:(1);(2);【答案】解:(1)原式.(2)原式.类型三、科学记数法6、(2014秋•福州)观察下列计算过程:(1)∵÷=,÷==,∴=(2)当a≠0时,∵÷===,÷==,=,由此可归纳出规律是:=(a≠0,P为正整数)请运用上述规律解决下列问题:(1)填空:= ;= .(2)用科学记数法:3×= .(写成小数形式)(3)把0.00000002写成如(2)的科学记数法的形式是: .【答案与解析】 解:(1)=; ==;(2)3×=0.0003,(3)0.00000002=2×.【总结升华】本题考查用科学记数法表示较小的数,一般形式为,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.