高中数学高考60第九章 平面解析几何 9 6 双曲线
展开
这是一份高中数学高考60第九章 平面解析几何 9 6 双曲线,共10页。试卷主要包含了双曲线定义,双曲线的标准方程和几何性质,已知双曲线C1等内容,欢迎下载使用。
§9.6 双曲线最新考纲考情考向分析了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).主要侧重双曲线的方程以及以双曲线方程为载体,研究参数a,b,c及与渐近线有关的问题,其中离心率和渐近线是重点.以选择、填空题为主,难度为中低档.一般不再考查与双曲线相关的解答题,解题时应熟练掌握基础内容及双曲线方程的求法,能灵活应用双曲线的几何性质. 1.双曲线定义平面内与两个定点F1,F2的 等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做 ,两焦点间的距离叫做 .集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(1)当 时,P点的轨迹是双曲线;(2)当 时,P点的轨迹是两条射线;(3)当 时,P点不存在.2.双曲线的标准方程和几何性质标准方程-=1(a>0,b>0)-=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈Rx∈R,y≤-a或y≥a对称性对称轴: 对称中心: 顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±xy=±x离心率e=,e∈ ,其中c=实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2= (c>a>0,c>b>0) 概念方法微思考1.平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定为双曲线吗?为什么? 2.方程Ax2+By2=1表示双曲线的充要条件是什么? 3.与椭圆标准方程相比较,双曲线标准方程中,a,b只限制a>0,b>0,二者没有大小要求,若a>b>0,a=b>0,0<a<b,双曲线哪些性质受影响? 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F1(0,4),F2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( )(2)方程-=1(mn>0)表示焦点在x轴上的双曲线.( )(3)双曲线方程-=λ(m>0,n>0,λ≠0)的渐近线方程是-=0,即±=0.( )(4)等轴双曲线的渐近线互相垂直,离心率等于.( )(5)若双曲线-=1(a>0,b>0)与-=1(a>0,b>0)的离心率分别是e1,e2,则+=1(此条件中两条双曲线称为共轭双曲线).( ) 题组二 教材改编2.[P61T1]若双曲线-=1(a>0,b>0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. B.5C. D.23.[P61A组T3]已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为-=1,C1与C2的离心率之积为,则C2的渐近线方程为( )A.x±y=0 B.x±y=0C.x±2y=0 D.2x±y=04.[P62A组T6]经过点A(4,1),且对称轴都在坐标轴上的等轴双曲线方程为________.题组三 易错自纠5.(2016·全国Ⅰ)已知方程-=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )A.(-1,3) B.(-1,)C.(0,3) D.(0,)6.若双曲线-=1(a>0,b>0)的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A. B. C. D.7.已知双曲线过点(4,),且渐近线方程为y=±x,则该双曲线的标准方程为________________.题型一 双曲线的定义例1 (1)已知定点F1(-2,0),F2(2,0),N是圆O:x2+y2=1上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹是( )A.椭圆 B.双曲线C.抛物线 D.圆(2)已知F1,F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=________. 引申探究1.本例(2)中,若将条件“|PF1|=2|PF2|”改为“∠F1PF2=60°”,则△F1PF2的面积是多少? 2.本例(2)中,若将条件“|PF1|=2|PF2|”改为“·=0”,则△F1PF2的面积是多少? 跟踪训练1 设双曲线x2-=1的左、右焦点分别为F1,F2,若点P在双曲线上,且△F1PF2为锐角三角形,则|PF1|+|PF2|的取值范围是________. 题型二 双曲线的标准方程例2 (1)(2018·大连调研)已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,则动圆圆心M的轨迹方程为________________.(2)根据下列条件,求双曲线的标准方程:①虚轴长为12,离心率为;②焦距为26,且经过点M(0,12);③经过两点P(-3,2)和Q(-6,-7). 跟踪训练2 (1)(2018·沈阳调研)设椭圆C1的离心率为,焦点在x轴上且长轴长为26,若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为________________.(2)(2017·全国Ⅲ)已知双曲线C:-=1(a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为( )A.-=1 B.-=1C.-=1 D.-=1 题型三 双曲线的几何性质 命题点1 与渐近线有关的问题例3 过双曲线-=1(a>0,b>0)的左焦点F作圆O:x2+y2=a2的两条切线,切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为( )A.y=±x B.y=±xC.y=±x D.y=±x命题点2 求离心率的值(或范围)例4 已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线的离心率为________.跟踪训练3 已知点F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O为坐标原点,点P在双曲线C的右支上,且满足|F1F2|=2|OP|,|PF1|≥3|PF2|,则双曲线C的离心率的取值范围是( )A.(1,+∞) B. C. D.高考中离心率问题离心率是椭圆与双曲线的重要几何性质,是高考重点考查的一个知识点,这类问题一般有两类:一类是根据一定的条件求离心率;另一类是根据一定的条件求离心率的取值范围,无论是哪类问题,其难点都是建立关于a,b,c的关系式(等式或不等式),并且最后要把其中的b用a,c表示,转化为关于离心率e的关系式,这是化解有关椭圆与双曲线的离心率问题难点的根本方法.例1 已知椭圆E:+=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于,则椭圆E的离心率的取值范围是( )A. B.C. D. 例2 已知F1,F2为双曲线的焦点,过F2作垂直于实轴的直线交双曲线于A,B两点,BF1交y轴于点C,若AC⊥BF1,则双曲线的离心率为( )A. B.C.2 D.21.(2018·合肥调研)双曲线-=1(a>0,b>0)的一条渐近线与直线x+2y-1=0垂直,则双曲线的离心率为( )A. B. C. D.+12.已知双曲线-=1(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为( )A.x±y=0 B.x±y=0C.x±y=0 D.2x±y=03.已知双曲线C:-=1(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若=2,且||=4,则双曲线C的方程为( )A.-=1 B.-=1C.-=1 D.-=14.(2018·河南洛阳联考)设F1,F2分别为双曲线-=1的左、右焦点,过F1引圆x2+y2=9的切线F1P交双曲线的右支于点P,T为切点,M为线段F1P的中点,O为坐标原点,则|MO|-|MT|等于( )A.4 B.3 C.2 D.15.已知双曲线x2-=1的左、右焦点分别为F1,F2,双曲线的离心率为e,若双曲线上存在一点P使=e,则·的值为( )A.3 B.2 C.-3 D.-26.(2018·安徽淮南三校联考)已知双曲线-=1的右焦点为F,P为双曲线左支上一点,点A(0,),则△APF周长的最小值为( )A.4+ B.4(1+)C.2(+) D.+37.已知离心率为的双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,M是双曲线C的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若=16,则双曲线的实轴长是( )A.32 B.16 C.84 D.48.(2018·山东泰安联考)已知双曲线C1:-=1(a>0,b>0),圆C2:x2+y2-2ax+a2=0,若双曲线C1的一条渐近线与圆C2有两个不同的交点,则双曲线C1的离心率的取值范围是( )A. B.C.(1,2) D.(2,+∞)9.(2016·北京)已知双曲线-=1(a>0,b>0)的一条渐近线为2x+y=0,一个焦点为(,0),则a=________;b=________.10.已知F1,F2分别是双曲线x2-=1(b>0)的左、右焦点,A是双曲线上在第一象限内的点,若|AF2|=2且∠F1AF2=45°,延长AF2交双曲线的右支于点B,则△F1AB的面积等于________.11.(2018·安阳模拟)已知焦点在x轴上的双曲线+=1,它的焦点到渐近线的距离的取值范围是__________.12.(2018·福建六校联考)已知双曲线C:-=1(a>0,b>0)的右焦点为F,左顶点为A,以F为圆心,FA为半径的圆交C的右支于P,Q两点,△APQ的一个内角为60°,则双曲线C的离心率为________.13.(2018·南昌调研)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,P为双曲线C上第二象限内一点,若直线y=x恰为线段PF2的垂直平分线,则双曲线C的离心率为( )A. B.C. D.14.(2018·山西太原五中月考)已知F1,F2是双曲线-=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左支交于点A,与右支交于点B,若|AF1|=2a,∠F1AF2=,则等于( )A.1 B. C. D.15.已知双曲线E:-=1(a>0,b>0)的左、右焦点分别为F1,F2,|F1F2|=8,P是E右支上的一点,PF1与y轴交于点A,△PAF2的内切圆与边AF2的切点为Q.若|AQ|=,则E的离心率是( )A.2 B. C. D.16.已知双曲线-=1 (a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=6|PF2|,则此双曲线的离心率e的最大值为________.
相关试卷
这是一份高中数学高考第九章 9 6双曲线-学生版,共13页。试卷主要包含了双曲线定义,双曲线的标准方程和几何性质,已知直线l与双曲线C,已知M是双曲线C,已知点A,B分别是双曲线C等内容,欢迎下载使用。
这是一份高中数学高考62第九章 平面解析几何 9 8 曲线与方程,共1页。
这是一份高中数学高考56第九章 平面解析几何 9 3 圆的方程,共8页。试卷主要包含了已知⊙C等内容,欢迎下载使用。