所属成套资源:(新高考)高考数学一轮基础复习讲义 (2份打包,教师版+原卷版)
(新高考)高考数学一轮基础复习讲义6.2等差数列(2份打包,教师版+原卷版)
展开这是一份(新高考)高考数学一轮基础复习讲义6.2等差数列(2份打包,教师版+原卷版),文件包含新高考高考数学一轮基础复习讲义62等差数列教师版doc、新高考高考数学一轮基础复习讲义62等差数列原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
第1课时
进门测
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )
(2)等差数列{an}的单调性是由公差d决定的.( √ )
(3)等差数列的前n项和公式是常数项为0的二次函数.( × )
(4)已知等差数列{an}的通项公式an=3-2n,则它的公差为-2.( √ )
2、在等差数列{an}中,若a2=4,a4=2,则a6等于( )
A.-1 B.0 C.1 D.6
答案 B
解析 由等差数列的性质,得a6=2a4-a2=2×2-4=0,故选B.
3、已知等差数列{an}前9项的和为27,a10=8,则a100等于( )
A.100 B.99 C.98 D.97
答案 C
解析 由等差数列性质,知S9===9a5=27,得a5=3,而a10=8,因此公差d==1,
∴a100=a10+90d=98,故选C.
4、已知数列{an}中,a3=3,an+1=an+2,则a2+a4=________,an=________.
答案 6 2n-3
解析 由已知得an+1-an=2,所以{an}为公差为2的等差数列,由a1+2d=3,得a1=-1,
所以an=-1+(n-1)×2=2n-3,a2+a4=2a3=6.
5、若等差数列{an}满足a7+a8+a9>0,a7+a10<0,则当n=________时,{an}的前n项和最大.
答案 8
解析 因为数列{an}是等差数列,且a7+a8+a9=3a8>0,所以a8>0.又a7+a10=a8+a9<0,所以a9<0.故当n=8时,其前n项和最大.
作业检查
无第2课时
阶段训练
题型一 等差数列基本量的运算
例1 (1)在数列{an}中,若a1=-2,且对任意的n∈N*有2an+1=1+2an,则数列{an}前10项的和为( )
A.2 B.10 C. D.
(2)已知{an}为等差数列,Sn为其前n项和.若a1=6,a3+a5=0,则S6=________.
答案 (1)C (2)6
解析 (1)由2an+1=1+2an得an+1-an=,
所以数列{an}是首项为-2,公差为的等差数列,
所以S10=10×(-2)+×=.
(2)∵a3+a5=2a4=0,∴a4=0.
又a1=6,∴a4=a1+3d=0,∴d=-2.
∴S6=6×6+×(-2)=6.
【同步练习】
(1)设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7等于( )
A.13 B.35
C.49 D.63
(2)已知{an}是等差数列,Sn是其前n项和.若a1+a=-3,S5=10,则a9的值是________.
答案 (1)C (2)20
解析 (1)∵a1+a7=a2+a6=3+11=14,
∴S7==49.
(2)设等差数列{an}的公差为d,由题意可得
解得
则a9=a1+8d=-4+8×3=20.
题型二 等差数列的判定与证明
例2 已知数列{an}中,a1=,an=2-(n≥2,n∈N*),数列{bn}满足bn=(n∈N*).
(1)求证:数列{bn}是等差数列;
(2)求数列{an}中的最大项和最小项,并说明理由.
(1)证明 因为an=2-(n≥2,n∈N*),
bn=(n∈N*),
所以bn+1-bn=-
=-=-=1.
又b1==-.
所以数列{bn}是以-为首项,1为公差的等差数列.
(2)解 由(1)知bn=n-,
则an=1+=1+.
设f(x)=1+,
则f(x)在区间(-∞,)和(,+∞)上为减函数.
所以当n=3时,an取得最小值-1,当n=4时,an取得最大值3.
引申探究
例2中,若条件变为a1=,nan+1=(n+1)an+n(n+1),试求数列{an}的通项公式.
解 由已知可得=+1,
即-=1,又a1=,
∴是以=为首项,1为公差的等差数列,
∴=+(n-1)·1=n-,
∴an=n2-n.
【同步练习】
(1)在数列{an}中,若a1=1,a2=,=+(n∈N*),则该数列的通项为( )
A.an= B.an=
C.an= D.an=
答案 A
解析 由已知式=+可得
-=-,知{}是首项为=1,公差为-=2-1=1的等差数列,所以=n,即an=.
(2)数列{an}满足a1=1,a2=2,an+2=2an+1-an+2.
①设bn=an+1-an,证明{bn}是等差数列;
②求{an}的通项公式.
①证明 由an+2=2an+1-an+2,
得an+2-an+1=an+1-an+2,
即bn+1=bn+2.
又b1=a2-a1=1,
所以{bn}是首项为1,公差为2的等差数列.
②解 由①得bn=1+2(n-1)=2n-1,
即an+1-an=2n-1.
于是 (ak+1-ak)= (2k-1),
所以an+1-a1=n2,即an+1=n2+a1.
又a1=1,所以{an}的通项公式为an=n2-2n+2.
第3课时
阶段重难点梳理
1.等差数列的定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.
2.等差数列的通项公式
如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是an=a1+(n-1)d.
3.等差中项
由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的等差中项.
4.等差数列的常用性质
(1)通项公式的推广:an=am+(n-m)d(n,m∈N*).
(2)若{an}为等差数列,且k+l=m+n(k,l,m,n∈N*),则ak+al=am+an.
(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.
(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.
(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为md的等差数列.
(6)数列Sm,S2m-Sm,S3m-S2m,…构成等差数列.
5.等差数列的前n项和公式
设等差数列{an}的公差为d,其前n项和Sn=或Sn=na1+d.
6.等差数列的前n项和公式与函数的关系
Sn=n2+n.
数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).
7.等差数列的前n项和的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若a1<0,d>0,则Sn存在最小值.
【知识拓展】
等差数列的四种判断方法
(1)定义法:an+1-an=d(d是常数)⇔{an}是等差数列.
(2)等差中项法:2an+1=an+an+2 (n∈N*)⇔{an}是等差数列.
(3)通项公式:an=pn+q(p,q为常数)⇔{an}是等差数列.
(4)前n项和公式:Sn=An2+Bn(A,B为常数)⇔{an}是等差数列.
重点题型训练
题型三 等差数列性质的应用
命题点1 等差数列项的性质
例3 (1)已知{an}为等差数列,若a1+a5+a9=8π,则{an}前9项的和S9=______,cos(a3+a7)的值为________.
(2)已知{an},{bn}都是等差数列,若a1+b10=9,a3+b8=15,则a5+b6=________.
答案 (1)24π - (2)21
解析 (1)由a1+a5+a9=3a5=8π,解得a5=,所以{an}前9项的和S9==9a5=9×=24π.
cos(a3+a7)=cos 2a5=cos =cos =-.
(2)因为{an},{bn}都是等差数列,所以2a3=a1+a5,2b8=b10+b6,所以2(a3+b8)=(a1+b10)+(a5+b6),即2×15=9+(a5+b6),解得a5+b6=21.
命题点2 等差数列前n项和的性质
例4 (1)设等差数列{an}的前n项和为Sn,且S3=-12,S9=45,则S12=________.
(2)在等差数列{an}中,a1=-2 018,其前n项和为Sn,若-=2,则S2 018的值等于( )
A.-2 018 B.-2 016
C.-2 019 D.-2 017
答案 (1)114 (2)A
解析 (1)因为{an}是等差数列,所以S3,S6-S3,S9-S6,S12-S9成等差数列,所以2(S6-S3)=S3+(S9-S6),即2(S6+12)=-12+(45-S6),解得S6=3.
又2(S9-S6)=(S6-S3)+(S12-S9),
即2×(45-3)=(3+12)+(S12-45),解得S12=114.
(2)由题意知,数列{}为等差数列,其公差为1,
∴=+(2 018-1)×1
=-2 018+2 017=-1.
∴S2 018=-2 018.
【同步练习】
(1)在等差数列{an}中,已知a4+a8=16,则该数列前11项和S11等于( )
A.58 B.88 C.143 D.176
(2)等差数列{an}与{bn}的前n项和分别为Sn和Tn,若=,则等于( )
A. B.
C. D.
答案 (1)B (2)A
解析 (1)S11==
==88.
(2)====
==.
题型四 等差数列的前n项和及其最值
例5 (1)在等差数列{an}中,2(a1+a3+a5)+3(a7+a9)=54,则此数列前10项的和S10等于( )
A.45 B.60
C.75 D.90
(2)在等差数列{an}中,S10=100,S100=10,则S110=________.
解析 (1)由题意得a3+a8=9,
所以S10====45.
(2)方法一 设数列{an}的首项为a1,公差为d,
则解得
所以S110=110a1+d=-110.
方法二 因为S100-S10==-90,
所以a11+a100=-2,
所以S110===-110.
答案 (1)A (2)-110
例6 在等差数列{an}中,已知a1=20,前n项和为Sn,且S10=S15,求当n取何值时,Sn取得最大值,并求出它的最大值.
规范解答
解 ∵a1=20,S10=S15,
∴10×20+d=15×20+d,∴d=-.
方法一 由an=20+(n-1)×=-n+,
得a13=0.
即当n≤12时,an>0,当n≥14时,an<0.
∴当n=12或n=13时,Sn取得最大值,
且最大值为S12=S13=12×20+×=130.
方法二 Sn=20n+·=-n2+n=-2+.
∵n∈N*,∴当n=12或n=13时,Sn有最大值,且最大值为S12=S13=130.
方法三 由S10=S15,得a11+a12+a13+a14+a15=0.
∴5a13=0,即a13=0.
∴当n=12或n=13时,Sn有最大值,且最大值为S12=S13=130.
思导总结
一、等差数列运算问题的通性通法
(1)等差数列运算问题的一般求法是设出首项a1和公差d,然后由通项公式或前n项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n项和公式,共涉及五个量a1,an,d,n,Sn,知其中三个就能求另外两个,体现了用方程的思想解决问题.
二、等差数列的四个判定方法
(1)定义法:证明对任意正整数n都有an+1-an等于同一个常数.
(2)等差中项法:证明对任意正整数n都有2an+1=an+an+2后,可递推得出an+2-an+1=an+1-an=an-an-1=an-1-an-2=…=a2-a1,根据定义得出数列{an}为等差数列.
(3)通项公式法:得出an=pn+q后,得an+1-an=p对任意正整数n恒成立,根据定义判定数列{an}为等差数列.
(4)前n项和公式法:得出Sn=An2+Bn后,根据Sn,an的关系,得出an,再使用定义法证明数列{an}为等差数列.
三、等差数列的性质
(1)项的性质:在等差数列{an}中,am-an=(m-n)d⇔=d(m≠n),其几何意义是点(n,an),(m,am)所在直线的斜率等于等差数列的公差.
(2)和的性质:在等差数列{an}中,Sn为其前n项和,则
①S2n=n(a1+a2n)=…=n(an+an+1);
②S2n-1=(2n-1)an.作业布置
1.在数列{an}中,an+1-an=2,a2=5,则{an}的前4项和为( )
A.9 B.22
C.24 D.32
答案 C
解析 由an+1-an=2,知{an}为等差数列且公差d=2,∴由a2=5,得a1=3,a3=7,a4=9,∴前4项和为3+5+7+9=24,故选C.
2.在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( )
A.40 B.42
C.43 D.45
答案 B
解析 a1+a2+a3=3a2=15,∴a2=5,
又a1=2,∴d=3,a4+a5+a6=3a5=3(a1+4d)
=3×14=42.
3.已知等差数列{an}满足a2=3,Sn-Sn-3=51(n>3),Sn=100,则n的值为( )
A.8 B.9
C.10 D.11
答案 C
解析 由Sn-Sn-3=51,得an-2+an-1+an=51,
所以an-1=17,又a2=3,
Sn==100,解得n=10.
4.各项均不为零的等差数列{an}中,若an+1=a-an-1(n∈N*,n≥2),则S2 016等于( )
A.0 B.2 C.2 015 D.4 032
答案 D
解析 由已知可得a=2an(n≥2),
∵{an}各项均不为零,
∴an=2(n≥2),
又{an}为等差数列,∴an=2,∴S2 016=4 032.
5.已知数列{an}满足an+1=an-,且a1=5,设{an}的前n项和为Sn,则使得Sn取得最大值的序号n的值为( )
A.7 B.8
C.7或8 D.8或9
答案 C
解析 由题意可知数列{an}是首项为5,公差为-的等差数列,所以an=5-(n-1)=,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以Sn取得最大值时,n=7或n=8,故选C.
*6.设数列{an}的前n项和为Sn,若为常数,则称数列{an}为“吉祥数列”.已知等差数列{bn}的首项为1,公差不为0,若数列{bn}为“吉祥数列”,则数列{bn}的通项公式为( )
A.bn=n-1 B.bn=2n-1
C.bn=n+1 D.bn=2n+1
答案 B
解析 设等差数列{bn}的公差为d(d≠0),
=k,因为b1=1,
则n+n(n-1)d=k[2n+×2n(2n-1)d],
即2+(n-1)d=4k+2k(2n-1)d,
整理得(4k-1)dn+(2k-1)(2-d)=0.
因为对任意的正整数n上式均成立,
所以(4k-1)d=0,(2k-1)(2-d)=0,
又公差d≠0,解得d=2,k=.
所以数列{bn}的通项公式为bn=2n-1.
7.已知数列{an}中,a1=1且=+(n∈N*),则a10=________.
答案
解析 由已知得=+(10-1)×=1+3=4,
故a10=.
8.设数列{an}的通项公式为an=2n-10(n∈N*),则|a1|+|a2|+…+|a15|=________.
答案 130
解析 由an=2n-10(n∈N*)知{an}是以-8为首项,2为公差的等差数列,又由an=2n-10≥0,得n≥5,∴当n≤5时,an≤0,当n>5时,an>0,∴|a1|+|a2|+…+|a15|=-(a1+a2+a3+a4)+(a5+a6+…+a15)=20+110=130.
9.设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有=,则+的值为________.
答案
解析 ∵{an},{bn}为等差数列,
∴+=+==.
∵====,
∴+=.
10.设数列{an}满足:a1=1,a2=3,且2nan=(n-1)an-1+(n+1)an+1,则a20的值是________.
答案
解析 由2nan=(n-1)an-1+(n+1)an+1,得
nan-(n-1)an-1=(n+1)an+1-nan,
又因为1×a1=1,2×a2-1×a1=5,
所以数列{nan}是首项为1,公差为5的等差数列,
则20a20=1+19×5,解得a20=.
11.在等差数列{an}中,a1=1,a3=-3.
(1)求数列{an}的通项公式;
(2)若数列{an}的前k项和Sk=-35,求k的值.
解 (1)设等差数列{an}的公差为d,
则an=a1+(n-1)d.
由a1=1,a3=-3,可得1+2d=-3,解得d=-2.
从而an=1+(n-1)×(-2)=3-2n.
(2)由(1)可知an=3-2n,
所以Sn==2n-n2.
由Sk=-35,可得2k-k2=-35,
即k2-2k-35=0,解得k=7或k=-5.
又k∈N*,故k=7.
12.若数列{an}的前n项和为Sn,且满足an+2SnSn-1=0(n≥2),a1=.
(1)求证:成等差数列;
(2)求数列{an}的通项公式.
(1)证明 当n≥2时,由an+2SnSn-1=0,
得Sn-Sn-1=-2SnSn-1,所以-=2,
又==2,
故是首项为2,公差为2的等差数列.
(2)解 由(1)可得=2n,∴Sn=.
当n≥2时,
an=Sn-Sn-1=-==-.
当n=1时,a1=不适合上式.
故an=
*13.已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=a+n-4(n∈N*).
(1)求证:数列{an}为等差数列;
(2)求数列{an}的通项公式.
(1)证明 当n=1时,有2a1=a+1-4,
即a-2a1-3=0,
解得a1=3(a1=-1舍去).
当n≥2时,有2Sn-1=a+n-5,
又2Sn=a+n-4,
两式相减得2an=a-a+1,
即a-2an+1=a,也即(an-1)2=a,
因此an-1=an-1或an-1=-an-1.
若an-1=-an-1,则an+an-1=1.
而a1=3,
所以a2=-2,这与数列{an}的各项均为正数相矛盾,
所以an-1=an-1,即an-an-1=1,
因此数列{an}是首项为3,公差为1的等差数列.
(2)解 由(1)知a1=3,d=1,
所以数列{an}的通项公式an=3+(n-1)×1=n+2,
即an=n+2.
相关试卷
这是一份(新高考)高考数学一轮复习学案+巩固提升练习6.2《等差数列》(2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲义+巩固练习62《等差数列》原卷版doc、新高考高考数学一轮复习讲义+巩固练习62《等差数列》原卷版pdf、新高考高考数学一轮复习讲义+巩固练习62《等差数列》教师版doc、新高考高考数学一轮复习讲义+巩固练习62《等差数列》教师版pdf等4份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份(新高考)高考数学一轮基础复习讲义9.7抛物线(2份打包,教师版+原卷版),文件包含新高考高考数学一轮基础复习讲义97抛物线原卷版doc、新高考高考数学一轮基础复习讲义97抛物线教师版doc等2份试卷配套教学资源,其中试卷共0页, 欢迎下载使用。
这是一份(新高考)高考数学一轮基础复习讲义8.5直线、平面垂直(2份打包,教师版+原卷版),文件包含新高考高考数学一轮基础复习讲义85直线平面垂直教师版doc、新高考高考数学一轮基础复习讲义85直线平面垂直原卷版doc等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。