- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题01 新定义型问题(原卷版+解析版) 试卷 1 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题02 韦达定理问题(原卷版+解析版) 试卷 2 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题03 黄金分割问题(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版) 试卷 0 次下载
- 【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题06 数式图坐标规律问题(原卷版+解析版) 试卷 1 次下载
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 反比例函数的k值问题(原卷版+解析版)
展开2023年中考数学二轮冲刺精准练新策略(全国通用)
第四篇 常考的亮点专题
专题05 反比例函数的k值问题
1.(2022长春)如图,在平面直角坐标系中,点P在反比例函数(,)的图象上,其纵坐标为2,过点P作//轴,交x轴于点Q,将线段绕点Q顺时针旋转60°得到线段.若点M也在该反比例函数的图象上,则k的值为( )
A. B. C. D. 4
【答案】C
【解析】作MN⊥x轴交于点N,分别表示出ON、MN,利用k值的几何意义列式即可求出结果.
作MN⊥x轴交于点N,如图所示,
∵P点纵坐标为:2,
∴P点坐标表示为:(,2),PQ=2,
由旋转可知:QM=PQ=2,∠PQM=60°,
∴∠MQN=30°,
∴MN=,QN=,
∴,
即:,
解得:k=,
故选:C.
【点睛】本题主要考查的是k的几何意义,表示出对应线段是解题的关键.
2. (2022湖南株洲)如图所示,矩形顶点、在轴上,顶点在第一象限,轴为该矩形的一条对称轴,且矩形的面积为6.若反比例函数的图象经过点,则的值为_________.
【答案】3
【解析】由图得,轴把矩形平均分为两份,即可得到上半部分的面积,利用矩形的面积公式即,又由于点C在反比例函数图象上,则可求得答案.
【详解】解:轴为该矩形的一条对称轴,且矩形的面积为6,
,
,
故答案为3.
【点睛】本题考查了反比例函数k的几何意义,熟练掌握是解题的关键.
3. (2022安徽)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.
【答案】3
【解析】【分析】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,先证四边形CDEB为矩形,得出CD=BE,再证Rt△COD≌Rt△BAE(HL),根据S平行四边形OCBA=4S△OCD=2,再求S△OBA=即可.
详解】过点C作CD⊥OA于D,过点B作BE⊥x轴于E,
∴CD∥BE,
∵四边形ABCO为平行四边形,
∴CB∥OA,即CB∥DE,OC=AB,
∴四边形CDEB为平行四边形,
∵CD⊥OA,
∴四边形CDEB为矩形,
∴CD=BE,
∴在Rt△COD和Rt△BAE中,
,
Rt△COD≌Rt△BAE(HL),
∴S△OCD=S△ABE,
∵OC=AC,CD⊥OA,
∴OD=AD,
∵反比例函数的图象经过点C,
∴S△OCD=S△CAD=,
∴S平行四边形OCBA=4S△OCD=2,
∴S△OBA=,
∴S△OBE=S△OBA+S△ABE=,
∴.
故答案为3.
【点睛】本题考查反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质,掌握反比例函数k的几何意义,平行四边形的性质与判定,矩形的判定与性质,三角形全等判定与性质.
4.(2022黑龙江齐齐哈尔)如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点D,且点D为线段AB的中点.若点C为x轴上任意一点,且△ABC的面积为4,则k=_______.
【答案】
【解析】设点,利用即可求出k的值.
设点,
∵点D为线段AB的中点.AB⊥y轴
∴,
又∵,
∴.
【点睛】本题考查利用面积求反比例函数的k的值,解题的关键是找出.
5. 如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,反比例函数y=(x>0)的图象经过对角线OB的中点D和顶点C.若菱形OABC的面积为12,则k的值为( )
A.6 B.5 C.4 D.3
【答案】C
【解析】如图,连接AC,∵四边形OABC是菱形,∴AC经过点D,且D是AC的中点.设点A的坐标为(a,0),点C坐标为(b,c),则点D坐标为(,).∵点C和点D都在反比例函数y=的图象上,∴bc=×,∴a=3b;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C.
法2:设点A的坐标为(a,0),点C的坐标为(c,),则,点D的坐标为(),
∴,解得,k=4,故选C.
6. (2022贵州铜仁)如图,点A、B在反比例函数的图象上,轴,垂足为D,.若四边形间面积为6,,则k的值为_______.
【答案】3
【解析】设点,可得,,从而得到CD=3a,再由.可得点B,从而得到,然后根据,即可求解.
【详解】设点,
∵轴,
∴,,
∵,
∴,
∴CD=3a,
∵.轴,
∴BC∥y轴,
∴点B,
∴,
∵,四边形间面积为6,
∴,
解得:.
故答案为:3.
【点睛】本题主要考查了反比例函数比例系数的几何意义,熟练掌握反比例函数比例系数的几何意义是解题的关键.
7. (2022辽宁沈阳)如图四边形ABCD是平行四边形,CD在x轴上,点B在y轴上,反比例函数的图象经过第一象限点A,且平行四边形ABCD的面积为6,则______.
【答案】6
【解析】过点A作AE⊥CD于点E,然后平行四边形的性质可知△AED≌△BOC,进而可得矩形ABOE的面积与平行四边形ABCD的面积相等,最后根据反比例函数k的几何意义可求解.
【详解】过点A作AE⊥CD于点E,如图所示:
∴,
∵四边形ABCD是平行四边形,
∴,
∴,
∴△AED≌△BOC(AAS),
∵平行四边形ABCD的面积为6,
∴,
∴;
故答案为6.
【点睛】本题主要考查平行四边形的性质及反比例函数k的几何意义,熟练掌握平行四边形的性质及反比例函数k的几何意义是解题的关键.
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版): 这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题04 图形位似问题(原卷版+解析版),文件包含专题04图形位似问题解析版docx、专题04图形位似问题原卷版docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 中考数学思想方法(原卷版+解析版): 这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题05 中考数学思想方法(原卷版+解析版),文件包含专题05中考数学思想方法解析版docx、专题05中考数学思想方法原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题19 函数解析式问题(原卷版+解析版): 这是一份【中考二轮专题复习】2023年中考数学全国通用专题备考试卷——专题19 函数解析式问题(原卷版+解析版),文件包含专题19函数解析式问题解析版docx、专题19函数解析式问题原卷版docx等2份试卷配套教学资源,其中试卷共15页, 欢迎下载使用。