所属成套资源:【优化探究】最新数学新中考二轮复习重难突破(浙江专用)
备战2023数学新中考二轮复习重难突破(浙江专用)专题07 不等式与不等式组
展开
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题07 不等式与不等式组,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题07不等式与不等式组解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题07不等式与不等式组原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
目标点拨1.了解不等式的意义,掌握不等式的概念及其基本性质;2.理解不等式(组)的解以及解集的含义;会解一元一次不等式(组),并能在数轴上表示不等式(组)的解集;体会数形结合的思想;3.初步体会不等式、方程、函数之间的内在联系与区别;4.能根据具体问题中的数量关系,列出一元一次不等式(组),解决简单的实际问题.知识总结 一、不等式的概念、性质及解集表示1.不等式一般地,用符号“<”(或“≤”)、“>”(或“≥”)连接的式子叫做不等式.能使不等式成立的未知数的值,叫做不等式的解.2.不等式的基本性质 理论依据式子表示性质1不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变若,则性质2不等式两边同时乘以(或除以)同一个正数,不等号的方向不变若,,则或性质3不等式两边同时乘以(或除以)同一个负数,不等号的方向改变若,,则或温馨提示:不等式的性质是解不等式的重要依据,在解不等式时,应注意:在不等式的两边同时乘以(或除以)一个负数时,不等号的方向一定要改变.3.不等式的解集及表示方法(1)不等式的解集:一般地,一个含有未知数的不等式有无数个解,其解是一个范围,这个范围就是不等式的解集.(2)不等式的解集的表示方法:①用不等式表示;②用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式有无限个解.二、一元一次不等式及其解法1.一元一次不等式不等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫一元一次不等式.2.解一元一次不等式的一般步骤解一元一次不等式的一般步骤为:①去分母;②去括号;③移项;④合并同类项;⑤系数化为1(注意不等号方向是否改变).三、一元一次不等式组及其解法1.一元一次不等式组一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.2.一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集,求不等式组解集的过程,叫做解不等式组.3.一元一次不等式组的解法先分别求出每个不等式的解集,再利用数轴求出这些一元一次不等式的的解集的公共部分即可,如果没有公共部分,则该不等式组无解.4.几种常见的不等式组的解集设,,是常数,关于的不等式组的解集的四种情况如下表所示(等号取不到时在数轴上用空心圆点表示):不等式组(其中)数轴表示解集口诀同大取大同小取小大小、小大中间找无解大大、小小取不了总结:一元一次不等式(组)的解法及其解集表示的考查形式如下:(1)一元一次不等式(组)的解法及其解集在数轴上的表示;(2)利用一次函数图象解一元一次不等式;(3)求一元一次不等式组的最小整数解;(4)求一元一次不等式组的所有整数解的和.四、列不等式(组)解决实际问题列不等式(组)解应用题的基本步骤如下:①审题;②设未知数;③列不等式(组);④解不等式(组);⑤检验并写出答案.总结:列不等式(组)解决实际问题常与一元一次方程、一次函数等综合考查,涉及的题型常与方案设计型问题相联系,如最大利润、最优方案等.列不等式时,要抓住关键词,如不大于、不超过、至多用“≤”连接,不少于、不低于、至少用“≥”连接. 经典例题1.(2020•衢州)不等式组的解集在数轴上表示正确的是( )A. B. C. D.2.(2020•嘉兴)不等式3(1﹣x)>2﹣4x的解在数轴上表示正确的是( )A. B. C. D.3.(2020•杭州)若a>b,则( )A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+14.(2020•舟山)已知四个实数a,b,c,d,若a>b,c>d,则( )A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.5.(2020•宁波)不等式x的解为( )A.x<1 B.x<﹣1 C.x>1 D.x>﹣16.(2020•黔东南州)不等式组的解集为 2<x≤6 .7.(2020•温州)不等式组的解为 ﹣2≤x<3 .8.(2020•温州)不等式组的解为 1<x≤9 .9.(2020•金华)不等式3x﹣6≤9的解是 x≤5 .10.(2020•绍兴)不等式3x﹣2≥4的解为 x≥2 .11.(2020•嘉兴)比较x2+1与2x的大小.(1)尝试(用“<”,“=”或“>”填空):①当x=1时,x2+1 = 2x;②当x=0时,x2+1 > 2x;③当x=﹣2时,x2+1 > 2x.(2)归纳:若x取任意实数,x2+1与2x有怎样的大小关系?试说明理由.12.(2020•金华)解不等式:5x﹣5<2(2+x).13.(2020•湖州)解不等式组.14.(2020•乐清市一模)某单位计划购进A,B,C三种型号的礼品共2700件,其中C型号礼品500件,A型号礼品比B型号礼品多200件.已知三种型号礼品的单价如表:型号ABC单价(元/件)302010(1)求计划购进A和B两种型号礼品分别多少件?(2)实际购买时,厂家给予打折优惠销售(如:8折指原价×0.8),在计划总价额不变的情况下,准备购进这批礼品.①若只购进B,C两种型号礼品,且B型礼品件数不超过C型礼品的2倍,求B型礼品最多购进多少件?②若只购进A,B两种型号礼品,它们的单价分别打a折、b折,a<b<10,a,b均为整数,且购进的礼品总数比计划多300件,求a,b的值.15.(2020•宁波模拟)2019年11月22日至23日,“一带一路”国际协商会在京举行.本届主题演讲及对话增加到150场左右,促成大量改善民生的热点领域项目签约.宁波一家科技公司准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各是多少元?(2)若甲,乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?16.(2020•永嘉县模拟)九二班计划购买A、B两种相册共42册作为毕业礼品,已知A种相册的单价比B种的多10元,买4册A种相册与买5册B种相册的费用相同.(1)求A、B两种相册的单价分别是多少元?(2)由于学生对两类相册喜好不同,经调查得知:购买的A种相册的数量要少于B种相册数量的,但又不少于B种相册数量的,如果设买A种相册x册.①有多少种不同的购买方案?②商店为了促销,决定对A种相册每册让利a元销售(12≤a≤18),B种相册每册让利b元销售,最后班委会同学在付款时发现:购买所需的总费用与购买的方案无关,当总费用最少时,求此时a的值.17.(2020•江北区模拟)随着宁波市江北区慈城古县城旅游开发的推进,到慈城旅游的全国各地游客逐年上升.深受当地老百姓喜爱的两种本土特产杨梅和年糕,也深受外地游客的青睐.现在,有两种特产大礼包的组合是这样的:若购买2筐杨梅和3盒年糕,则需花费270元;若购买1筐杨梅和4盒年糕,则需花费260元.(杨梅、年糕分别按包装筐和包装盒计价)(1)求一筐杨梅、一盒年糕的售价分别是多少元?(2)如果需购买两种特产共12件(1筐或1盒称为1件),要求年糕的盒数不高于杨梅筐数的两倍,请你设计一种购买方案,使所需总费用最低.
相关试卷
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题16 视图与投影,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。