所属成套资源:2023年中考数学第一轮基础知识专题练习
2023年中考数学第一轮基础知识专题练习 专题十 二次函数的实际应用(无答案)
展开
这是一份2023年中考数学第一轮基础知识专题练习 专题十 二次函数的实际应用(无答案),共4页。
专题十 二次函数的实际应用类型一 利润问题1. (2022深圳)某科技公司销售高新科技产品,该产品成本为8万元,销售单价x(万元)与销售量y(件)的关系如下表所示:x(万元)10121416y(件)40302010(1)求y与x的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少? 2. (2022本溪辽阳葫芦岛)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元? 3. 全国视野 新考法 (2022郴州)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量y (单位:万件)与销售单价x(单位:元)之间有如下表所示关系:x…4.05.05.56.57.5…y…8.06.05.03.01.0…第3题图(1)根据表中的数据,在上图中描出实数对(x,y)所对应的点,并画出y关于x的函数图象;(2)根据画出的函数图象,求出y关于x的函数表达式;(3)设经营此商品的月销售利润为P(单位:万元),①写出P关于x的函数表达式;②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元? 类型二 抛物线型问题考向1 以抛球为背景4. (2022台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt-4.9t2.现将某弹性小球从地面竖直向上抛出,初速度为v1 ,经过时间t1落回地面,运动过程中小球的最大高度为h1 (如图①); 小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2 (如图②).若h1=2h2, 则t1∶ t2=________.第4题图考向2 以拱桥为背景5. (2022衢州)如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5 m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系;(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.第5题图 考向3 其他背景6. (2022随州)如今我国的大棚(如图①)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B处,现对其横截面建立如图②所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=-x2+bx+c,现测得A,B两墙体之间的水平距离为6米.(1)直接写出b,c的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?第6题图
相关试卷
这是一份2023年中考数学第一轮基础知识专题练习 专题五 不等式(组)及不等式的应用(无答案),共4页。试卷主要包含了 已知a>b,下列结论, 不等式2x-1>3的解集是等内容,欢迎下载使用。
这是一份2023年中考数学第一轮基础知识专题练习 专题四 方程(组)及其应用(无答案),共12页。试卷主要包含了方程及其应用等内容,欢迎下载使用。
这是一份2023年中考数学第一轮基础知识专题练习 专题十一 二次函数与几何图形综合题(无答案),共7页。