数学第一章 直角三角形的边角关系5 三角函数的应用同步练习题
展开
这是一份数学第一章 直角三角形的边角关系5 三角函数的应用同步练习题,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
《1.5三角函数的应用》课后强化 班级:________ 姓名:________一、单选题(共 10 小题)1、如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=,∠ADC=,则竹竿AB与AD的长度之比为 A. B. C. D.2、如图,已知窗户高米,窗户外面上方0.2米的点C处安装水平遮阳板米,当太阳光线与水平线成α角时,光线刚好不能直接射入室内,则的关系式是( )A.n=mtanα-0.2 B.n=mtanα+0.2C.m=ntanα-0.2 D.m=ntanα+0.23、如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于( )A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米4、如图,一座金字塔被发现时,顶部已经淡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为( )A.120m B.60m C.60m D.120m5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是( )A.由楼顶望塔顶仰角为60°B.由楼顶望塔基俯角为60°C.由楼顶望塔顶仰角为30°D.由楼顶望塔基俯角为30°6、如图,某建筑物上挂着“巴山渝水,魅力重庆”的宣传条幅,王同学利用测倾器在斜坡的底部处测得条幅底部的仰角为60°,沿斜坡AB走到B处测得条幅顶部C的仰角为50°.已知斜坡的坡度米,米(点在同平面内,,测倾器的高度忽略不计),则条幅的长度约为(参考数据:)A.12.5米 B.12.8米 C.13.1米 D.13.4米7、如图,小明想测量斜坡旁一棵垂直于地面的树的高度,他们先在点处测得树顶的仰角为,然后在坡顶测得树顶的仰角为,已知斜坡的长度为,斜坡顶点到地面的垂直高度,则树的高度是( )A.20 B.30 C.30 D.408、下列计算正确的是( )A.=±3 B.sin2α=2sinα C. D.9、如图为北京冬奥会“雪飞天”滑雪大跳台赛道.若点A的高AE=a米,水平赛道BC=b米,赛道AB,CD的坡角均为θ,则点D与点A的水平距离DE为( )A.米 B.( b)米 C.(a-b)sinθ米 D.(a﹣b)cosθ米10、某兴趣小组想测量一座大楼 AB的高度.如图,大楼前有一段斜坡BC ,已知 BC的长为 12 米它的坡度 .在离 C点 40 米的 D处,用测量仪测得大楼顶端 A的仰角为 37度,测角仪DE的高度为 1.5米,求大楼AB 的高度约为( )米()A.39.3 B.37.8 C.33.3 D.25.7二、填空题(共 10 小题)1、如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点 M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有 ____2、已知:实常数同时满足下列两个等式:⑴;⑵(其中为任意锐角),则之间的关系式是:___________3、如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,则山高BC=___米(结果保留根号).4、如图,小石同学在A,B两点分别测得某建筑物上条幅两端C,D两点的仰角均为60°,若点O,A,B在同一直线上,A,B两点间距离为3米,则条幅的高CD为______米.5、一山坡的坡度,小刚从山坡脚下点处上坡走了米到达点处,那么他上升的高度是________米.6、操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP;再将,分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)的大小为______°;(2)当四边形APCD是平行四边形时的值为______.7、如图,在等腰梯形中,,,直角三角板含角的顶点在边上移动,一直角边始终经过点,斜边与所在的直线交于点.若为等腰三角形,则的长等于______.8、量角器如图放置,点、、在一条直线上,点在处,点在处.(1)______(填“”“”或“”);(2)已知量角器(看作半圆)的半径为4cm,点到量角器中心的距离为0.5cm,则______.9、小明为测量校园里一颗大树的高度,在树底部B所在的水平面内,将测角仪竖直放在与B相距的位置,在D处测得树顶A的仰角为.若测角仪的高度是,则大树的高度约为_____.(结果精确到.参考数据:)10、如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,已知托板长,支撑板长,托板固定在支撑板顶端点C处,且,托板可绕点C转动,支撑板可绕点D转动.(1)若,,求点A到直线的距离为________;(2)为了观看舒适,保持,在(1)的情况下,将绕点D顺时针旋转,使点B落在直线上即可,求旋转的角度为________.三、解答题(共 6 小题)1、小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线与底板的边缘线所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点、、在同一直线上,,,.(1)求的长;(2)如图④,垫入散热架后,要使显示屏的边缘线与水平线的夹角仍保持120°,求点到的距离.(结果保留根号) 2、如图,已知教学楼前面的玻璃幕墙垂直于地面,为测量的高度,身高1.6米的小凯从教学楼底点沿直线步行4米到达长度为10米的斜坡的底端点处,在处用仪器测得,然后再沿着斜坡上行到达点(已知且),到达点后继续沿平行于地面的平台直线行走了6米到达点,此时他刚好踩着太阳光照射下楼顶点的影子.这时小凯同学的影长米,用线段表示小凯同学身高,,,,,,,,,在同一个平面内,且,,和,,在各自的同一水平线上,其中,,,.(1)求线段和的长度;(2)求玻璃幕墙的高度.(,结果保留一位小数) 3、湖中小岛上码头C处一名游客突发疾病,需要救援.位于湖面B点处的快艇和湖岸A处的救援船接到通知后立刻同时出发前往救援.计划由快艇赶到码头C接该游客,再沿方向行驶,与救援船相遇后将该游客转运到救援船上.已知C在A的北偏东30°方向上,B在A的北偏东60°方向上,且B在C的正南方向900米处.(1)求湖岸A与码头C的距离(结果精确到1米,参考数据:);(2)救援船的平均速度为150米/分,快艇的平均速度为400米/分,在接到通知后,快艇能否在5分钟内将该游客送上救援船?请说明理由.(接送游客上下船的时间忽略不计) 4、如图,某消防队在一居民楼前进行演习,消防员利用云梯成功救出点B处的求救者后,又发现点B正上方点C处还有一名求救者.在消防车上点A处测得点B和点C的仰角分别是45°和65°,点A距地面2.5米,点B距地面10.5米.为救出点C处的求救者,云梯需要继续上升的高度BC约为多少米?(结果保留整数.参考数据:tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4) 5、某景区A、B两个景点位于湖泊两侧,游客从景点A到景点B必须经过C处才能到达.观测得景点B在景点A的北偏东30°,从景点A出发向正北方向步行600米到达C处,测得景点B在C的北偏东75°方向.(1)求景点B和C处之间的距离;(结果保留根号)(2)当地政府为了便捷游客游览,打算修建一条从景点A到景点B的笔直的跨湖大桥.大桥修建后,从景点A到景点B比原来少走多少米?(结果保留整数.参考数据:≈1.414,≈1.732) 6、位于河南省登封市境内的元代观星台,是中国现存最早的天文台,也是世界文化遗产之一.某校数学社团的同学们使用卷尺和自制的测角仪测量观星台的高度.如图所示,他们在地面一条水 平步道上架设测角仪,先在点处测得观星台最高点的仰角为,然后沿方向前进到达点处,测得点的仰角为.测角仪的高度为,求观星台最高点距离地面的高度(结果精确到.参考数据: );“景点简介”显示,观星台的高度为,请计算本次测量结果的误差,并提出一条减小误差的合理化建议.
相关试卷
这是一份初中数学北师大版九年级下册5 三角函数的应用综合训练题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册5 三角函数的应用练习题,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学北师大版九年级下册5 三角函数的应用课堂检测,共3页。试卷主要包含了单选题,填空题,应用题,证明题等内容,欢迎下载使用。