年终活动
搜索
    上传资料 赚现金

    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版)

    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版)第1页
    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版)第2页
    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版)第3页
    还剩11页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版)

    展开

    这是一份2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
    2022-2023学年四川省凉山彝族自治州冕宁县冕宁中学校高一上学期12月月考数学试题 一、单选题1.命题的否定是(    A BC D【答案】C【分析】利用全称量词的命题的否定解答即可.【详解】解:因为全称量词的命题的否定是存在量词的命题,命题是全称量词的命题,所以其否定是”.故选:C2.若集合,则下列选项正确的是(    A B C D【答案】B【分析】根据元素与集合之间的关系判断AB选项,判断出不是集合A的子集得到C错误,根据交集的概念判断D选项.【详解】A错误;B正确;不是集合A的子集,故C错误;D错误.故选:B.3.已知函数,则的值是(    A B C D【答案】C【解析】先计算的值,然后再计算的值.【详解】时,故选:C4.若函数是偶函数,且在上是增函数,则(    A BC D【答案】D【分析】根据偶函数的性质,结合函数的单调性进行求解即可.【详解】因为函数是偶函数,所以,因为函数上是增函数,所以有,即故选:D5.已知实数满足,则的取值范围是(       A BC D【答案】A【分析】根据不等式的性质求解即可.【详解】解:因为所以所以.故选:A.6.某物体一天中的温度T是时间t的函数:,时间的单位是小时,温度的单位是表示中午12时,其后取值为正,其前取值为负,则上午8时的温度为(    A18 B8 C0 D4【答案】B【分析】上午8,代入函数求值即可.【详解】上午8,故.故选:B7.已知函数的图象如图所示,则关于的不等式的解集为(    A BC D【答案】B【分析】分析可得,利用二次不等式的解法解不等式,即可得解.【详解】由二次函数的图象可知,函数的图象开口向上,且该函数的图象与轴相切,对称轴为直线所以,,且,则不等式,即,解得因此,不等式的解集为.故选:B.8.已知偶函数的定义域为,若对任意的,当时,总有,则满足不等式的取值范围为(    A B C D【答案】D【分析】根据题中的结构特征,构造函数,由题意判断该函数的奇偶性和单调性,而不等式即为,根据的单调性解不等式可得答案.【详解】令函数 ,因为对任意的,当时,总有,恒成立,所以上单调递减.因为为偶函数,所以上为奇函数,且上单调递减,又因为所以 ,所以,解得故选∶D 二、多选题9.下列函数中,与函数是同一个函数的是(    A BC D【答案】BD【分析】利用函数的定义求解.【详解】函数的定义域为RA. ,定义域为R,解析式不同,故错误;B. ,定义域为R,故正确;C. ,定义域为,定义域不同,故错误;D. ,定义域为R,故正确;故选:BD10.对于任意实数abcd,有以下四个命题,其中正确的是(    A.若,则 B.若,则C.若,则 D.若,则【答案】BCD【分析】通过举例可以判断A错误,对于BCD,可以利用不等式的性质变形即可证明.【详解】对于A,若,此时明显A错误;对于B,因为,则,两边同除,可得,故B正确;对于C,因为 ,则,在的两边同除,可得C正确;对于D,因为,根据不等式同向可以相加得,移项得D正确.故选:BCD11.下列说法正确的是(    A.偶函数的定义域为,则B.一次函数满足,则函数的解析式为C.奇函数上单调递增,且最大值为8,最小值为,则D.若集合中至多有一个元素,则【答案】AC【分析】A,由偶函数定义域对称解出参数即可;B,设,则可得,建立方程组求解即可;C,由单调性得,由奇偶性得,即可求解;D,分别讨论解的个数即可【详解】A偶函数的定义域为,解得,故A对;B,设一次函数,则,解得函数的解析式为,故B错;C奇函数上单调递增,且最大值为8,最小值为,故C对;D集合中至多有一个元素,方程至多有一个解,时,方程只有一个解,符合题意;时,由方程至多有一个解,可得,解得D.故选:AC12.下面四个结论正确的是(    A的最小值为2 B.正数满足,则的最小值为C的最小值为2 D.若,则的最小值为6【答案】ABD【分析】每个选项依次考查,根据基本不等式的一正、二定、三相等判断.注意必须计算取等条件.【详解】A,当且仅当取得,A对;B:正数,当且仅当时取得,故B对;C: ,等号取不到,故C错;D当且仅当时取等号,D对;故选:ABD 三、填空题13.函数的定义域为______.【答案】【分析】根据被开方式大于等于零,分母不为零,即可得到结果.【详解】使函数有意义需满足:,解得,且故定义域为.故答案为:14.已知幂函数的图像过点,则___________.【答案】【分析】先设幂函数解析式,再将代入即可求出的解析式,进而求得.【详解】幂函数的图像过点故答案为:15.若命题,不等式恒成立为假命题,写出实数取值范围的一个充分不必要条件___________.【答案】,(是真子集即可)【分析】根据给定条件,求出不等式恒成立的m的取值范围,再由命题为假求解作答.【详解】,不等式恒成立,当时,对任意实数不恒成立,因此,,必有,解得所以,命题,不等式恒成立为真命题时,因为命题,不等式恒成立为假命题,所以,所以实数的取值范围是.所以,实数取值范围的一个充分不必要条件可以为故答案为:,(是真子集即可) 四、双空题16.已知函数,若有且仅有不相等的三个正数,使得,则的值为_________,若存在,使得,则的取值范围是_________.【答案】          【分析】画出函数图象,结合图象分析,可得.【详解】所画出函数的图象有且仅有不相等的三个正数使由图分析可得若存在,使得,令,则的两根,的两根的范围是 故答案为【点睛】本题考查分段函数函数图象,数形结合思想,属于一般题. 五、解答题17.(1)解不等式2)计算 【答案】1)不等式的解集为;(2.【分析】1)解分式不等式即得解;2)直接利用指数幂的运算法则计算得解.【详解】解:(1.所以不等式的解集为.2)原式=.18.二次函数满足,且方程有两个相等的实数根.(1)的解析式;(2)若函数在区间不单调,求实数的取值范围;(3)的最大值与最小值差为,若,求的最小值.【答案】(1)(2)(3) 【分析】1)设,根据,求得,由,函数关于对称,再根据方程有相等的实数根判别式为0,即可得解;2)根据二次函数的单调性列出不等式即可得解:3)根据二次函数的性质求解最值,进而根据基本不等式即可求解.【详解】1,由,得因为,所以函数关于对称,即,所以又方程有相等的实数根,即方程有相等的实数根,,解得,所以,所以2的对称轴为,由于在区间 不单调,所以,解得所以实数的取值范围为3)由于的对称轴为,所以单调递减,在单调递增,所以当时,分别取最小值和最大值,所以 ,故,进而,由于,所以,当且仅当时,取等号,所以的最小值为19.已知集合.(1)的充分不必要条件,求的取值范围;(2),求的取值范围.【答案】(1)(2) 【分析】(1)根据的充分不必要条件得出真包含于可求解;(2)分类讨论结合集合的数轴表示可求的取值范围.【详解】1)由题意, ,即,解得所以. 的充分不必要条件,得真包含于,且等号不能同时取到,解得.的取值范围为2)当时,得,即,符合题意. 时,得,即.,得,解得所以.综上所述,的取值范围为.20202131日,国务院新闻办公室举行新闻发布会,工业和信息化部提出了芯片发展的五项措施,进一步激励国内科技巨头加大了科技研发投入的力度.根据市场调查某数码产品公司生产某款运动手环的年固定成本为50万元,每生产1万只还需另投入20万元.若该公司一年内共生产该款运动手环万只并能全部销售完,平均每万只的销售投入为万元,且.当该公司一年内共生产该款运动手环5万只并全部销售完时,年利润为300万元.(1)求出的值并写出年利润(万元)关于年产量(万部)的函数解析式(2)当年产量为多少万只时,公司在该款运动手环的生产中所获得的利润最大?并求出最大利润.【答案】(1)(2)当年产量为30万只时,公司在该款运动手环的生产中所获得的利润最大,最大利润为850万元. 【分析】1)由题意可得,由可求出,然后可得的解析式;2)利用二次函数的知识求出当的最大值,利用基本不等式求出当的最大值,然后作比较可得答案.【详解】1)由题意可得,所以解得所以2)当时,,其对称轴为所以当取得最大值万元时,万元当且仅当时等号成立因为所以当年产量为30万只时,公司在该款运动手环的生产中所获得的利润最大,最大利润为850万元.21.已知定义在的函数是奇函数.(1)求实数的值;(2)试判断的单调性,并用定义证明;(3)若关于的不等式有解,求实数的取值范围.【答案】(1)(2)上单调递增(3) 【分析】1)因为函数是定义在上的奇函数,所以2)根据函数的单调性定义证明即可;3)根据函数单调性,直接比较内函数的大小,再分离参数得出,将原问题转换为解出不等式即可.【详解】1)因为函数是定义在上的奇函数,所以,解得,经检验满足题意;2,令,且因为,所以,即所以所以函数上单调递增;3因为为奇函数,所以因为为增函数,所以分离参数可得:原问题转化为有解,即因为在区间单调递增,单调递减,时,;当时,所以当时,取得最小值,所以故实数的取值范围是22.定义:若存在正数,当时,函数的值域为,则称类函数”.已知函数.(1)若函数是第类函数,求的取值范围;(2)若函数是第3类函数,求的值.【答案】(1)(2). 【分析】1)根据已知条件及第类函数函数的定义,再利用函数的单调性与函数的最值的关系,结合一元二次方程的根的分布即可求解;2)根据已知条件及第类函数函数的定义,分类讨论结合函数单调性与函数最值的关系即可求解.【详解】1)因为上是增函数,且上的值域是所以,即由此得到是方程的两个根, 则,解得所以的取值范围是.2)根据题意可得.时,上单调递增,因为是第3类函数,所以,即. 因为,所以.时,上单调递减, 因为是第3类函数,所以,因为,所以,即代入,得因为,所以没有实数解.时,所以当时,.因为是第3类函数,所以,解得(舍去).综上所述,. 

    相关试卷

    2022-2023学年四川省凉山州冕宁中学高二上学期12月月考数学试题含解析:

    这是一份2022-2023学年四川省凉山州冕宁中学高二上学期12月月考数学试题含解析,共13页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年四川省广安市第二中学校高一上学期第一次月考数学试题(解析版):

    这是一份2022-2023学年四川省广安市第二中学校高一上学期第一次月考数学试题(解析版),共12页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年四川省峨眉第二中学校高一上学期11月月考数学试题(解析版):

    这是一份2022-2023学年四川省峨眉第二中学校高一上学期11月月考数学试题(解析版),共12页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map