所属成套资源:全套2022年全国新高考Ⅰ卷数学试题变式题含解析
2022年全国新高考Ⅰ卷数学试题变式题第20-22题解析版
展开
这是一份2022年全国新高考Ⅰ卷数学试题变式题第20-22题解析版,共78页。试卷主要包含了茶是中国颇受青睐的传统饮品等内容,欢迎下载使用。
2022年全国新高考Ⅰ卷数学试题变式题20-22题
原题20
1.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好
良好
病例组
40
60
对照组
10
90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050
0.010
0.001
k
3.841
6.635
10.828
变式题1基础
2.2017年8月27日~9月8日,第13届全运会在天津举行.4年后,第14届全运会将于2021年9月15日~27日在西安举行.为了宣传全运会,西安某大学在天津全运会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看天津全运会开幕式情况进行了问卷调查,统计数据如下:
收看
没收看
男生
60
20
女生
20
20
(1)根据右表说明,能否有99%的把握认为,学生是否收看开幕式与性别有关?
附:,其中.
0.10
0.05
0.025
0.01
0.005
2.706
3.841
5.024
6.635
7.879
(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2021年西安全运会志愿者宣传活动.若从这8人中随机选取2人到校广播站开展全运会比赛项目宣传介绍,
①求在2人中有女生入选的条件下,恰好选到一名男生一名女生的概率;
②记为入选的2人中的女生人数,求随机变量的分布列及数学期望.
变式题2基础
3.茶是中国颇受青睐的传统饮品.于爱茶的人而言,不仅迷恋于茶恬淡的气味与味道,泡茶工序带来的仪式感也是个修身养性静心的方式.但是细细品来,茶饮复杂的味型之中,总能品出点点的苦和淡淡的涩,所以也有人并不喜欢饮茶.在人们的固有印象中,总觉得中年人好饮茶,年轻人对饮茶持有怎样的态度呢?带着这样的疑问,高二3班的小明同学做了一项社会调查.调查针对身边的同学与方便联系的家长,共回收了200份有效问卷.为了提高统计工作的效率,小明只记录了问卷中三项有效数据,
喜欢饮茶
不喜欢饮茶
合计
家长
60
120
学生
50
合计
(1)请将上面的信息表格补充完整(请在答题卡中画表格作答);
(2)从这200人中随机选取2人,已知选取的2人中有人喜欢饮茶,求其中有学生的概率;
(3)请利用独立性检验相关的知识帮小明同学形成这次调查的结论.
公式:
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
变式题3基础
4.某校举行青年教师视导活动,对48位青年教师的备课本进行了检查,相关数据如下表:
性别
等第
合计
良好
优秀
男教师
a
10
18
女教师
10
20
合计
30
48
附:(其中).
临界值表:
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
(1)是否有的把握认为备课本是否优秀与性别有关?
(2)从48本备课本中不放回的抽取两次,每次抽取一本,求第一次取到女教师备课本的条件下,第二次取到优秀备课本的概率.
变式题4巩固
5.在新冠肺炎疫情肆虐之初,作为重要防控物资之一的口罩是医务人员和人民群众抗击疫情的武器与保障,为了打赢疫情防控阻击战,我国企业依靠自身强大的科研能力,果断转产自行研制新型全自动高速口罩生产机,“争分夺秒、保质保量”成为口罩生产线上的重要标语.
(1)在试产初期,某新型全自动高速口罩生产流水线有四道工序,前三道工序完成成品口罩的生产且互不影响,第四道是检测工序,包括红外线自动检测与人工抽检.已知批次的成品口罩生产中,前三道工序的次品率分别为,.
①求批次I成品口罩的次品率.
②第四道工序中红外线自动检测为次品的口罩会被自动淘汰,合格的口罩进入流水线并由工人进行抽查检验.已知批次I的成品口罩红外线自动检测显示合格率为92%,求工人在流水线进行人工抽检时,抽检一个口罩恰为合格品的概率(百分号前保留两位小数).
(2)已知某批次成品口罩的次品率为,设100个成品口罩中恰有1个不合格品的概率为,记的最大值点为,改进生产线后批次的口罩的次品率.某医院获得批次,的口罩捐赠并分发给该院医务人员使用.经统计,正常佩戴使用这两个批次的口罩期间,该院医务人员核酸检测情况如下面条形图所示,求,并判断是否有99.9%的把握认为口罩质量与感染新冠肺炎病毒的风险有关?
附:.
0.050
0.010
0.005
0.001
3.841
6.635
7.879
10.828
变式题5巩固
6.近日,为进一步做好新冠肺炎疫情防控工作,某社区以网上调查问卷形式对辖区内部分居民做了新冠疫苗免费接种的宣传和调查.调查数据如下:共95份有效问卷,40名男性中有10名不愿意接种疫苗,55名女性中有5名不愿意接种疫苗.
(1)根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为是否愿意接种疫苗与性别有关?
愿意接种
不愿意接种
合计
男
女
合计
(2)从不愿意接种的15份调查问卷中得到拒绝接种新冠疫苗的原因:有3份身体原因不能接种;有2份认为新冠肺炎已得到控制,无需接种:有4份担心疫苗的有效性:有6份担心疫苗的安全性.求从这15份问卷中随机选出2份,在已知至少有一份担心疫苗安全性的条件下,另一份是担心疫苗有效性的概率.
附:
0.050
0.010
0.005
3.841
6.635
7.879
变式题6巩固
7.今年两会期间国家对学生学业与未来发展以及身体素质的重要性的阐述引起了全社会的共鸣.某大学学生发展中心对大一的400名男生做了单次引体向上的测试,得到了如图所示的直方图(引体向上个数只记整数).学生发展中心为进一步了解情况,组织了两个研究小组
(1)第一小组决定从单次完成1-15个的引体向上男生中,按照分层抽样抽取11人进行全面的体能测试,①单次完成11-15个引体向上的男生甲被抽到的概率是多少?
②该小组又从这11人中抽取2人进行个别访谈,已知抽到的其中一个男生单次完成了3个引体向上,求抽到的另一个男生单次完成了11-15个引体向上的概率是多少?
(2)第二小组从学校学生的成绩与体育锻炼相关性角度进行研究,得到了这400人的学业成绩与体育成绩之间的列联表.
学业优秀
学业不优秀
总计
体育成绩不优秀
100
200
300
体育成绩优秀
50
50
100
总计
150
250
400
请你根据联表判断是否有%的把握认为体育锻炼与学业成绩有关?
参考公式及数据
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.01
0.005
0.001
0.46
0.71
1.32
2.07
2.71
3.84
5.024
6.635
7.879
10.828
变式题7巩固
8.某种病菌在某地区人群中传播,目前临床医学研究中已有费用昂贵但能准确检测出个体是否带菌的方法.现引进操作易、成本低的新型检测方法:每次只需检测,两项指标,若指标的值大于4且指标的值大于100,则检测结果呈阳性,否则呈阴性.为考查该检测方法的准确度,随机抽取50位带菌者(用“*”表示)和50位不带菌者(用“”表示)各做一次检测,他们检测后的数据,制成统计图:
(1)从这100名被检测者中,随机抽取一名不带菌者,求检测结果呈阳性的概率;
(2)完成下列列联表,并判断能否在犯错误概率不超过0.001的前提下,认为“带菌”与“检测结果呈阳性”有关?
检测结果呈阳性
检测结果呈阴性
合计
不带菌者
带菌者
合计
(参考公式:,其中)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
2.072
2.706
3.841
5.024
6.635
7.879
10.828
变式题8提升
9.深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考查甲球员对球队的贡献,现作如下数据统计:
球队胜
球队负
总计
甲参加
甲未参加
总计
(1)求、、、、的值,据此能否有的把握认为球队胜利与甲球员参赛有关;
(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:、、、,当出任前锋、中锋、后卫以及守门员时,球队输球的概率依次为:、、、.则:
①当他参加比赛时,求球队某场比赛输球的概率;
②当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;
③如果你是教练员,应用概率统计有关知识,该如何使用乙球员?
附表及公式:
.
变式题9提升
10.一家大型超市委托某机构调查该超市的顾客使用移动支付的情况.调查人员从年龄在[20,60]内的顾客中,随机抽取了200人,调查结果如图:
(1)为推广移动支付,超市准备对使用移动支付的每位顾客赠送1个环保购物袋.若某日该超市预计有10000人购物,试根据上述数据估计,该超市当天应准备多少个环保购物袋?
(2)填写下面列联表,并根据列联表判断是否有99.9%的把握认为使用移动支付与年龄有关:
年龄0),
因为x=2时,函数f(x)取得极值,所以,即,解得,
则,则,令,则或,所以和时,,单调递减,时,,则单调递增,故函数在x=2处取得极大值,故符合题意,因为;
(2)函数f(x)的定义域为(0,+∞),依题意在时恒成立,即在时恒成立,则在时恒成立,即,
当时,取最小值,
所以a的取值范围是.
(3)当时,,
即.
设,
则,令,或,
当变化时,的变化情况如下表:
x
(0,1)
1
(1,2)
2
(2,4)
g′(x)
+
0
-
0
+
g(x)
递增
极大值
递减
极小值
递增
所以g(x)极小值=g(2)=ln2-b-2,
g(x)极大值=g(1)=-b-,
又g(4)=2ln2-b-2,
因为方程g(x)=0在[1,4]上恰有两个不相等的实数根,
则,解得ln2-2
相关试卷
这是一份2022-2023学年变式题 2022年高考全国甲卷数学(文科)高考真题变式题(解析版),共141页。
这是一份2022-2023学年变式题 2022年高考全国甲卷数学(理科)高考真题变式题(解析版),共146页。
这是一份2022年全国新高考II卷数学试题变式题第20-22题解析版,共89页。