2023年中考数学专题复习《圆综合压轴题》解答题专题提升训练+
展开
这是一份2023年中考数学专题复习《圆综合压轴题》解答题专题提升训练+,共33页。试卷主要包含了已知,如图,在△ABC中,AB=AC等内容,欢迎下载使用。
(1)求证:直线DE是⊙O的切线;
(2)求证:AB=AM;
(3)若ME=1,∠F=30°,求BF的长.
2.如图,在⊙O中,AB为⊙O的直径,点E在⊙O上,D为的中点,连接AE,BD并延长交于点C.连接OD,在OD的延长线上取一点F,连接BF,使∠CBF=∠BAC.
(1)求证:BF为⊙O的切线;
(2)若AE=4,OF=,求⊙O的半径.
3.已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,连接AC,BC,∠D=30°,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.
(1)求证:CA=CD;
(2)若AB=12,求线段BF的长.
4.如图,在半径为10cm的⊙O中,AB是⊙O的直径,CD是过⊙O上一点C的直线,且AD⊥DC于点D,AC平分∠BAD,点E是BC的中点,OE=6cm.
(1)求证:CD是⊙O的切线;
(2)求AD的长.
5.如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.
(1)求证:直线PE是⊙O的切线;
(2)若⊙O的半径为6,∠P=30°,求CE的长.
6.如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.
(1)连接AF,求证:AF是⊙O的切线;
(2)若FC=10,AC=6,求FD的长.
7.如图,P为⊙O外一点,PA、PB为⊙O的切线,切点分别为A、B,直线PO交⊙O于点D、E,交AB于点C.
(1)求证:∠ADE=∠PAE.
(2)若∠ADE=30°,求证:AE=PE.
(3)若PE=4,CD=6,求CE的长.
8.如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.
(1)求证:FG是⊙O的切线;
(2)若BG=1,BF=3,求CF的长.
9.如图,AB为⊙O的直径,过圆上一点D作⊙O的切线CD交BA的延长线于点C,过点O作OE∥AD交CD于点E,连接BE.
(1)直线BE与⊙O相切吗?并说明理由;
(2)若CA=2,CD=4,求DE的长.
10.如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足是点H,过点C作直线分别与AB,AD的延长线交于点E,F,且∠ECD=2∠BAD.
(1)求证:CF是⊙O的切线;
(2)如果AB=10,CD=6,
①求AE的长;
②求△AEF的面积.
11.如图,DP是⊙O的切线,D为切点,弦AB∥DP,连接BO并延长,与⊙O交于点C,与DP交于点E,连接AC并延长,与DP交于点F,连接OD.
(1)求证:AF∥OD;
(2)若OD=5,AB=8,求线段EF的长.
12.如图,△ABC内接于⊙O,AB=AC,AD是⊙O的直径,交BC于点E,过点D作DF∥BC,交AB的延长线于点F,连接BD.
(1)求证:DF是⊙O的切线;
(2)已知AC=12,AF=15,求DF的长.
13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,过点C作CE⊥AD交AD的延长线于点E,延长EC,AB交于点F,∠ECD=∠BCF.
(1)求证:CE为⊙O的切线;
(2)若DE=1,CD=3,求⊙O的半径.
14.如图,已知:AB为⊙O的直径,⊙O分别交△ABC的边AC、BC于点D、E,点F为AC的延长线上一点,且∠CBF=∠BOE.
(1)求证:BF是⊙O的切线;
(2)若AB=4,∠CBF=45°,BE=2EC,求AD和CF的长.
15.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是的中点,DE∥BC交AC的延长线于点E.
(1)求证:直线DE与⊙O相切;
(2)若⊙O的直径是10,∠A=45°,求CE的长.
16.如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.
(1)求证:DF是⊙O的切线;
(2)求线段OF的长度.
17.如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若BF=10,EF=20,求⊙O的半径和AD的长.
18.如图,AB为⊙O直径,D为⊙O上一点,BC⊥CD于点C,交⊙O于点E,CD与BA的延长线交于点F,BD平分∠ABC.
(1)求证:CD是⊙O的切线;
(2)若AB=10,CE=1,求CD和DF的长.
19.如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.
(1)求证:EF是⊙O的切线;
(2)若OC=9,AC=4,AE=8,求BF的长.
20.如图,在Rt△ABC中,∠C=90°,D是AB上的一点,以AD为直径的⊙O与BC相切于点E,连接AE,DE.
(1)求证:AE平分∠BAC;
(2)若∠B=30°,求的值.
参考答案
1.(1)证明:连接OD,则OD=OA,
∴∠ODA=∠OAD,
∵AD平分∠CAB,
∴∠OAD=∠DAC,
∴∠ODA=∠DAC,
∴OD∥AC,
∵DE⊥AC,
∴∠ODF=∠AED=90°,
∵OD是⊙O的半径,且DE⊥OD,
∴直线DE是⊙O的切线.
(2)证明:∵线段AB是⊙O的直径,
∴∠ADB=90°,
∴∠ADM=180°﹣∠ADB=90°,
∴∠M+∠DAM=90°,∠ABM+∠DAB=90°,
∵∠DAM=∠DAB,
∴∠M=∠ABM,
∴AB=AM.
(3)解:∵∠AEF=90°,∠F=30°,
∴∠BAM=60°,
∴△ABM是等边三角形,
∴∠M=60°,
∵∠DEM=90°,ME=1,
∴∠EDM=30°,
∴MD=2ME=2,
∴BD=MD=2,
∵∠BDF=∠EDM=30°,
∴∠BDF=∠F,
∴BF=BD=2.
2.(1)证明:如图,连接AD,
AB是圆的直径,则∠ADB=90°,
D为的中点,则∠BAD=∠CAD=∠BAC,
∵,
∴∠CBF=∠BAD,
∵∠BAD+∠ABD=90°,
∴∠ABF=∠ABD+∠CBF=90°,
∴AB⊥BF,
∵OB是⊙O的半径,
∴BF是⊙O的切线;
(2)解:如图,连接BE,
AB是圆的直径,则∠AEB=90°,
∵∠BOD=2∠BAD,∠BAC=2∠BAD,
∴∠BOD=∠BAC,
又∵∠ABF=∠AEB=90°,
∴△OBF∽△AEB,
∴OB:AE=OF:AB,
∴OB:4=:2OB,OB2=9,
OB>0,则OB=3,
∴⊙O的半径为3.
3.(1)证明:连接OC,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵∠D=30°,
∴∠COD=90°﹣∠D=60°,
∴∠A=∠COD=30°,
∴∠A=∠D=30°,
∴CA=CD;
(2)解:∵AB为⊙O的直径,
∴∠ACB=90°,
∵∠A=30°,AB=12,
∴BC=AB=6,
∵CE平分∠ACB,
∴∠BCE=∠ACB=45°,
∵BF⊥CE,
∴∠BFC=90°,
∴BF=BC•sin45°=6×=3,
∴线段BF的长为3.
4.(1)证明:连接OC,如图:
∵AC平分∠BAD,
∴∠DAC=∠CAO,
∵OA=OC,
∴∠CAO=∠OCA,
∴∠DAC=∠OCA,
∴AD∥OC,
∵AD⊥DC,
∴CO⊥DC,
∵OC是⊙O的半径,
∴CD是⊙O的切线;
(2)解:∵E是BC的中点,且OA=OB,
∴OE是△ABC的中位线,AC=2OE,
∵OE=6cm,
∴AC=12cm,
∵AB是⊙O的直径,
∴∠ACB=90°=∠ADC,
又∠DAC=∠CAB,
∴△DAC∽△CAB,
∴,即=,
∴AD=cm.
5.(1)证明:连接OD,如图:
∵AB=AC,
∴∠ABC=∠ACB,
∵OB=OD,
∴∠ABC=∠ODB,
∴∠ACB=∠ODB,
∴OD∥AC,
∵DE⊥AC,
∴DE⊥OD,即PE⊥OD,
∵OD是⊙O的半径,
∴PE是⊙O的切线;
(2)解:连接AD,连接OD,如图:
∵DE⊥AC,
∴∠AEP=90°,
∵∠P=30°,
∴∠PAE=60°,
∵AB=AC,
∴△ABC是等边三角形,
∴∠C=60°,
∵⊙O的半径为6,
∴BC=AB=12,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴BD=CD=BC=6,
在Rt△CDE中,
CE=CD•csC=6×cs60°=3,
答:CE的长是3.
6.(1)证明:在△AOF和△EOF中,
,
∴△AOF≌△EOF(SAS),
∴∠OAF=∠OEF,
∵BC与⊙O相切,
∴OE⊥FC,
∴∠OAF=∠OEF=90°,
即OA⊥AF,
∵OA是⊙O的半径,
∴AF是⊙O的切线;
(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,
∴AF==8,
∵∠OCE=∠FCA,∠OEC=∠FAC=90°,
∴△OEC∽△FAC,
∴,
设⊙O的半径为r,则,
解得r=,
在Rt△FAO中,∠FAO=90°,AF=8,AO=,
∴OF==,
∴FD=OF﹣OD=﹣,
即FD的长为﹣.
7.(1)证明:连接OA,如图,
∵PA为⊙O的切线,
∴AO⊥PA,
∴∠OAE+∠PAE=90°.
∵DE是⊙O的直径,
∴∠DAE=90°,
∴∠ADE+∠AED=90°.
∵OA=OE,
∴∠OAE=∠AED,
∴∠ADE=∠PAE;
(2)证明:由(1)知:∠ADE=∠PAE=30°,
∵∠DAE=90°,
∴∠AED=90°﹣∠ADE=60°.
∵∠AED=∠PAE+∠APE,
∴∠APE=∠PAE=30°,
∴AE=PE;
(3)解:设CE=x,则DE=CD+CE=6+x,
∴OA=OE=,
∴OC=OE﹣CE=,
OP=OE+PE=.
∵PA、PB为⊙O的切线,
∴PA=PB,PO平分∠APB,
∴PO⊥AB.
∵PA为⊙O的切线,
∴AO⊥PA,
∴△OAC∽△OPA,
∴,
∴,
即:x2+10x﹣24=0.
解得:x=2或﹣12(不合题意,舍去),
∴CE=2.
8.(1)证明:如图,连接OF,
∵AB=AC,
∴∠B=∠C,
∵OF=OC,
∴∠C=∠OFC,
∴∠OFC=∠B,
∴OF∥AB,
∵FG⊥AB,
∴FG⊥OF,
又∵OF是半径,
∴GF是⊙O的切线;
(2)解:如图,连接OE,过点O作OH⊥CF于H,
∵BG=1,BF=3,∠BGF=90°,
∴FG===2,
∵⊙O与AB相切于点E,
∴OE⊥AB,
又∵AB⊥GF,OF⊥GF,
∴四边形GFOE是矩形,
∴OE=GF=2,
∴OF=OC=2,
又∵OH⊥CF,
∴CH=FH,
∵csC=csB=,
∴,
∴CH=,
∴CF=.
9.解:(1)直线BE与⊙O相切,
理由:连接OD,
∵CD与⊙O相切于点D,
∴∠ODE=90°,
∵AD∥OE,
∴∠ADO=∠DOE,∠DAO=∠EOB,
∵OD=OA,
∴∠ADO=∠DAO,
∴∠DOE=∠EOB,
∵OD=OB,OE=OE,
∴△DOE≌△BOE(SAS),
∴∠OBE=∠ODE=90°,
∵OB是⊙O的半径,
∴直线BE与⊙O相切;
(2)解法一:设⊙O的半径为r,
在Rt△ODC中,OD2+DC2=OC2,
∴r2+42=(r+2)2,
∴r=3,
∴AB=2r=6,
∴BC=AC+AB=2+6=8,
由(1)得:△DOE≌△BOE,
∴DE=BE,
在Rt△BCE中,BC2+BE2=CE2,
∴82+BE2=(4+DE)2,
∴64+DE2=(4+DE)2,
∴DE=6;
解法二:设⊙O的半径为r,
在Rt△ODC中,OD2+DC2=OC2,
∴r2+42=(r+2)2,
∴r=3,
∴OA=3,
∵AD∥OE,
∴=,
∴=,
∴DE=6,
∴DE的长为6.
10.(1)证明:连接OC,如图,
∵AB是⊙O的直径,AB⊥CD,
∴,
∴∠CAB=∠DAB.
∵∠COB=2∠CAB,
∴∠COB=2∠BAD.
∵∠ECD=2∠BAD,
∴∠ECD=∠COB.
∵AB⊥CD,
∴∠COB+∠OCH=90°,
∴∠OCH+∠ECD=90°,
∴∠OCE=90°.
∴OC⊥CF.
∵OC是⊙O的半径,
∴CF是⊙O的切线;
(2)解:①∵AB=10,
∴OA=OB=OC=5,
∵AB是⊙O的直径,AB⊥CD,
∴CH=DH=CD=3.
∴OH==4,
∵OC⊥CF,CH⊥OE,
∴△OCH∽△OEC,
∴,
∴,
∴OE=.
∴AE=OA+OE=5+=;
②过点F作FG⊥AB,交AB的延长线于点G,如图,
∵∠OCF=∠FGE=90°,∠CEO=∠GEF,
∴△OCE∽△FGE.
∴,
设FG=4k,则FE=5k,
∴EG==3k,
∵DH⊥AB,FG⊥AB,
∴DH∥FG.
∴,
∴,
解得:k=.
∴FG=4k=5.
∴△AEF的面积=×AE•FG=.
11.(1)证明:延长DO交AB于点H,
∵DP是⊙O的切线,
∴OD⊥DP,
∵AB∥DP,
∴HD⊥AB,
∵BC为⊙O的直径,
∴∠BAC=90°,
∴AF∥OD;
(2)∵OH⊥AB,AB=8,
∴BH=AH=4,
∴OH===3,
∵BH∥ED,
∴△BOH∽△EOD,
∴=,即=,
解得:ED=,
∵∠BAC=90°,DH⊥AB,DH⊥DP,
∴四边形AFDH为矩形,
∴DF=AH=4,
∴EF=ED﹣DF=﹣4=.
12.(1)证明:∵AD是⊙O的直径,
∴∠ABD=90°,
即∠ABC+∠CBD=90°,
∵AB=AC,
∴∠ABC=∠C,
∵∠ADB=∠C,
∴∠ABC=∠ADB,
∵BC∥DF,
∴∠CBD=∠FDB,
∴∠ADB+∠FDB=90°,
即∠ADF=90°,
∴AD⊥DF,
又∵OD是⊙O的半径,
∴DF是⊙O的切线;
(2)解:∵AB=AC=12,AF=15,
∴BF=AF﹣AB=3,
∵∠F=∠F,∠FBD=∠FDA=90°,
∴△FBD∽△FDA,
∴BF:DF=DF:AF,
∴DF2=BF×AF=3×15=45,
∴DF==3.
13.(1)证明:如图1,连接OC,
∵OB=OC,
∴∠OCB=∠OBC,
∵四边形ABCD内接于⊙O,
∴∠CDE=∠OBC,
∵CE⊥AD,
∴∠E=∠CDE+∠ECD=90°,
∵∠ECD=∠BCF,
∴∠OCB+∠BCF=90°,
∴∠OCE=90°,即OC⊥EF,
∵OC是⊙O的半径,
∴CE为⊙O的切线;
(2)解:如图2,过点O作OG⊥AE于G,连接OC,OD,则∠OGE=90°,
∵∠E=∠OCE=90°,
∴四边形OGEC是矩形,
∴OC=EG,OG=EC,
设⊙O的半径为x,
Rt△CDE中,CD=3,DE=1,
∴EC==2,
∴OG=2,GD=x﹣1,OD=x,
由勾股定理得:OD2=OG2+DG2,
∴x2=(2)2+(x﹣1)2,
解得:x=4.5,
∴⊙O的半径是4.5.
14.(1)证明:连结AE,OE,
∵∠BAE=∠BOE,∠CBF=∠BOE,
∴∠BAE=∠CBF,
∵AB为⊙O的直径,
∴∠AEB=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE+∠CBF=90°,
即∠ABF=90°,
∴BF⊥AB,
∴BF是⊙O的切线;
(2)解:过点C作CG⊥BF于点G,连结BD,
∵∠CBF=45°,
∴∠ABE=90°﹣∠CBF=45°,
在Rt△ABE中,AB=4,
∴AE=BE=4×sin45°=4,
∵BE=2EC,
∴EC=2,BC=6,
在Rt△CBG中,∠CBG=45°,BC=6,
∴CG=BG=3,
∵CG⊥BF,BF⊥AB,
∴AB∥CG,
∴△FCG∽△FAB,
∴=,
∴=,
∴FG=9,
∴BF=12,
在Rt△FCG中,CF==6,
在Rt△ABF中,AF==8,
∵AB为⊙O的直径,
∴∠ADB=90°,
又∵∠BAD=∠BAF,
∴cs∠BAD=cs∠BAF,
即=,
∴=,
∴AD=.
15.(1)证明:连接OD,如图,
∵点D是的中点,
∴OD⊥BC,
∵DE∥BC,
∴OD⊥DE,
∴直线DE与⊙O相切;
(2)解:∵AC是⊙O的直径,
∴∠B=90°,
∵∠A=45°,
∴∠ACB=45°,
∵BC∥DE,
∴∠E=45°,
而∠ODE=90°,
∴△ODE为等腰直角三角形,
∴OE=OD=5,
∴CE=OE﹣OC=5﹣5.
16.(1)证明:连接OD,
∵△ABC是等边三角形,
∴∠C=∠A=60,
∵OC=OD,
∴△OCD是等边三角形,
∴∠CDO=∠A=60,
∴OD∥AB,
∵DF⊥AB,
∴∠FDO=∠AFD=90°,
∴OD⊥DF,
∴DF是⊙O的切线;
(2)解:∵OD∥AB,OC=OB,
∴OD是△ABC的中位线,
∵∠AFD=90°,∠A=60,
∴∠ADF=30°,
∵AF=1
∴CD=OD=AD=2AF=2,
在Rt△ADF中,由勾股定理得DF2=AD2﹣AF2=3,
在Rt△ODF中,由勾股定理得OF=,
∴线段OF的长为.
17.(1)证明:连接OE,
∵AB是⊙O的直径,
∴∠AEB=90°,
即∠AEO+∠OEB=90°,
∵AE平分∠CAB,
∴∠CAE=∠BAE,
∵∠BEF=∠CAE,
∴∠BEF=∠BAE,
∵OA=OE,
∴∠BAE=∠AEO,
∴∠BEF=∠AEO,
∴∠BEF+∠OEB=90°,
∴∠OEF=90°,
∴OE⊥EF,
∵OE是⊙O的半径,
∴EF是⊙O的切线;
(2)解:如图,设⊙O的半径为x,则OE=OB=x,
∴OF=x+10,
在Rt△OEF中,由勾股定理得:OE2+EF2=OF2,
∴x2+202=(x+10)2,
解得:x=15,
∴⊙O的半径为15;
∵∠BEF=∠BAE,∠F=∠F,
∴△EBF∽△AEF,
∴==,
设BE=a,则AE=2a,
由勾股定理得:AE2+BE2=AB2,
即a2+(2a)2=302,
解得:a=6,
∴AE=2a=12,
∵∠CAE=∠BAE,
∴,
∴OE⊥BC,
∵OE⊥EF,
∴BC∥EF,
∴,即,
∴AD=9.
18.(1)证明:连接OD,
∵BD平分∠ABC.
∴∠ABD=∠DBC,
又∵OB=OD,
∴∠OBD=∠ODB,
∴∠DBC=∠ODB,
又∵BC⊥CD,
∴∠C=90°,
∴∠DBC+∠BDC=90°,
∴∠ODB+∠BDC=90°,
即OD⊥DC,
∴CD是⊙O的切线;
(2)解:连接AE交OD于点H,
∵AB为⊙O直径,
∴∠AEB=90°,
∴∠HEC=90°,
∵BC⊥CD,OD⊥DC,
∴∠ODC=∠C=90°,
∴四边形HECD是矩形,
∴DH=CE=1,HE=CD,∠EHD=90°,HE∥CD,
∴OD⊥AE,
∴AH=HE,
∵AB=10,
∴OA=OD=5,
∴OH=OD﹣DH=5﹣1=4,
∴AH=,
∴HE=AH=3,
∴CD=HE=3,
∵HE∥CD,
∴△OAH∽△OFD,
∴,
∴,
∴DF=.
19.证明:(1)连接OE,
∵OA=OE,
∴∠OEA=∠OAE,
在Rt△ABC中,∠ACB=90°,
∴∠BAC+∠B=90°,
∵BF=EF,
∴∠B=∠BEF,
∵∠OAE=∠BAC,
∴∠OEA=∠BAC,
∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,
∴OE⊥EF,
∵OE是⊙O的半径,
∴EF是⊙O的切线;
(2)解:连接DE,
∵OC=9,AC=4,
∴OA=OC﹣AC=5,
∵AD=2OA,
∴AD=10,
∵AD是⊙O的直径,
∴∠AED=90°,
在Rt△ADE中,
∵DE===6,
∴cs∠DAE===,
在Rt△ABC中,cs∠BAC==,
∵∠BAC=∠DAE,
∴=,
∴AB=5,
∴BE=AB+AE=5+8=13,
∵OD=OE,
∴∠ODE=∠OED,
∵EF是⊙O的切线,
∴∠FEO=90°,
∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,
∴∠FEB=∠OED,
∴∠B=∠FEB=∠OED=∠ODE,
∴△FBE∽△ODE,
∴=,
∴=,
∴BF=.
方法二:解:连接DE,
∵OC=9,AC=4,
∴OA=OC﹣AC=5,
∵AD=2OA,
∴AD=10,
∵AD是⊙O的直径,
∴∠AED=90°,
在Rt△ADE中,
∵DE===6,
∴cs∠DAE===,
在Rt△ABC中,cs∠BAC==,
∵∠BAC=∠DAE,
∴=,
∴AB=5,
∴BE=AB+AE=5+8=13,
过F作FH⊥BE于F,
则BH=6.5,
∵∠B的余弦等于0.6,
∴BF=6.5÷0.6=.
20.(1)证明:连接OE,
∵BC是⊙O的切线,
∴OE⊥BC,即∠OEB=90°,
∵∠C=90°,
∴OE∥AC,
∴∠OEA=∠EAC,
∵OE=OA,
∴∠OEA=∠OAE,
∴∠OAE=∠EAC,即AE平分∠BAC;
(2)解:∵AD为⊙O的直径,
∴∠AED=90°,
∵∠OAE=∠EAC,∠C=90°,
∴△DAE∽△EAC,
∴=,
∵∠C=90°,∠B=30°,
∴∠BAC=90°﹣30°=60°,
∴∠DAE=∠BAC=30°,
∵cs∠DAE=,cs30°=,
∴==.
相关试卷
这是一份2023年 九年级数学中考复习圆综合压轴题专题提升训练附答案,共47页。试卷主要包含了概念生成,综合与实践等内容,欢迎下载使用。
这是一份2023年 九年级数学中考复习几何综合压轴题专题提升训练附答案,共47页。试卷主要包含了圆中最长的弦是 ;,问题情境,综合与实践,已知等内容,欢迎下载使用。
这是一份专题40 代数综合压轴题-2023年中考数学二轮专题提升训练,共24页。试卷主要包含了配方法的应用,一元二次方程与二次函数的综合,含参二次函数,二次函数与几何综合,绝对值概念的应用等内容,欢迎下载使用。