2023年中考数学专题16 特殊的平行四边形(原卷版)
展开
这是一份2023年中考数学专题16 特殊的平行四边形(原卷版),共14页。试卷主要包含了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,联系,中点四边形等内容,欢迎下载使用。
专题16 特殊的平行四边形一、矩形的性质与判定1.矩形的性质:1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB.(如图)2.矩形的判定:1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.二、菱形的性质与判定1.菱形的性质:1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.2.菱形的判定:1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.三、正方形的性质与判定1.正方形的性质:1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.四、联系(1)两组对边分别平行;(2)相邻两边相等;(3)有一个角是直角;(4)有一个角是直角;(5)相邻两边相等;(6)有一个角是直角,相邻两边相等;(7)四边相等;(8)有三个角都是直角.五、中点四边形1)任意四边形所得到的中点四边形一定是平行四边形.2)对角线相等的四边形所得到的中点四边形是矩形.3)对角线互相垂直的四边形所得到的中点四边形是菱形.4)对角线互相垂直且相等的四边形所得到的中点四边形是正方形.考向一 矩形的性质1.在矩形ABCD中,AC、BD相交于点O,若△AOB的面积为2,则矩形ABCD的面积为( )A.4 B.6 C.8 D.102.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,连接EF,若AB=6cm,BC=8cm.则EF的长是( )A.2.2cm B.2.3cm C.2.4cm D.2.5cm3.已知四边形ABCD是矩形,点E是矩形ABCD的边上的点,且EA=EC.若AB=6,AC=2,则DE的长是 .4.如图,在矩形ABCD中,对角线AC,BD相交于点O,已知∠BOC=120°,DC=3cm,则AC的长为 cm.5.如图,在矩形ABCD中,对角线AC的垂直平分线分别与边AB和边CD的延长线交于点M,N,与边AD交于点E,垂足为点O.(1)求证:△AOM≌△CON;(2)若AB=3,AD=6,请直接写出AE的长为 .6.如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)求证:△DOE≌△BOF;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长. 考向二 矩形的判定7.已知平行四边形ABCD中,下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD,其中能说明平行四边形ABCD是矩形的是( )A.① B.② C.③ D.④8.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是( )A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND9.如图,在平行四边形ABCD中,在不添加任何辅助线的情况下,请添加一个条件 ,使平行四边形ABCD是矩形.10.如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF,求证:四边形ABFC是矩形. 11.如图,已知在△ABC中AB=AC,AD是BC边上的中线,E,G分别是AC,DC的中点,F为DE延长线上的点,∠FCA=∠CEG.(1)求证:AD∥CF;(2)求证:四边形ADCF是矩形. 考向三 菱形的性质12.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE间的距离.若AE间的距离调节到60cm,菱形的边长AB=20cm,则∠DAB的度数是( )A.90° B.100° C.120° D.150°13.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( )A.8 B.8 C.4 D.214.如图,在菱形ABCD中,E、F分别是AB、CD上的点,且AE=CF,EF与AC相交于点O,连接BO.若∠DAC=36°,则∠OBC的度数为( )A.36° B.54° C.64° D.72°15.四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=,则CE的长为 .16.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长. 考向四 菱形的判定17.下列条件中,能判定▱ABCD是菱形的是( )A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD18.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是( )A.∠ADB=90° B.OA=OB C.OA=OC D.AB=BC19.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是 (只填写序号)20.如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形. 21.如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC、CD、DA于点P、M、Q、N.(1)求证:△PBE≌△QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形. 考向五 正方形的性质22.如图,四边形OBCD是正方形,O,D两点的坐标分别是(0,0),(0,6),点C在第一象限,则点C的坐标是( )A.(6,3) B.(3,6) C.(0,6) D.(6,6)23.如图的正三角形ABC与正方形CDEF中,B、C、D三点共线,且AC=10,CF=8.若有一动点P沿着CA由C往A移动,则FP的长度最小为多少?( )A.4 B.5 C.4 D.524.如图,在正方形ABCD中,E是对角线BD上一点,AE的延长线交CD于点F,连接CE.若∠BAE=56°,则∠CEF= °.25.已知:如图,在正方形ABCD中,对角线AC,BD相交于点O,点E,F分别是边BC,CD上的点,且∠EOF=90°.求证:CE=DF. 考向六 正方形的判定26.关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形 B.若AC⊥BD,则▱ABCD是正方形 C.若AC=BD,则▱ABCD是矩形 D.若AB=AD,则▱ABCD是正方形27.矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件 ,使其成为正方形(只填一个即可)28.如图,等边△AEF的顶点E,F在矩形ABCD的边BC,CD上,且∠CEF=45°.求证:矩形ABCD是正方形. 29.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形. 考向七 中点四边形1.顺次连接菱形四边的中点得到的四边形一定是( )A.正方形 B.菱形 C.矩形 D.以上都不对2.如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )A.互相平分 B.相等 C.互相垂直 D.互相垂直平分3.如图,四边形ABCD中,AC=m,BD=n,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去,得到四边形A5B5C5D5的周长是( )A. B. C. D.一.选择题(共7小题)1.如图,要判定▱ABCD是菱形,需要添加的条件是( )A.AB=AC B.BC=BD C.AC=BD D.AB=BC2.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB3.顺次连接菱形各边的中点所形成的四边形是( )A.等腰梯形 B.矩形 C.菱形 D.正方形4.若菱形的周长为16,高为2,则菱形两邻角的度数之比为( )A.4:1 B.5:1 C.6:1 D.7:15.如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是( )A. B. C. D.6.如图,在正方形ABCD的外侧,作等边△ABE,则∠BED为( )A.15° B.35° C.45° D.55°7.如图所示,点O是矩形ABCD对角线AC的中点,OE∥AB交AD于点E.若OE=3,BC=8,则OB的长为( )A.4 B.5 C. D.二.填空题(共6小题)8.如图,菱形ABCD中,∠ACD=40°,则∠ABC= °.9.如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是 .10.已知菱形的周长为4,两条对角线长的和为6,则菱形的面积为 .11.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是 (只填写序号)12.在平行四边形ABCD中,对角线AC与BD相交于点O,要使四边形ABCD是正方形,还需添加一组条件.下面给出了四组条件:①AB⊥AD,且AB=AD;②AB=BD,且AB⊥BD;③OB=OC,且OB⊥OC;④AB=AD,且AC=BD.其中正确的序号是 .13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是 .三.解答题(共6小题)14.如图,在矩形ABCD,AD=AE,DF⊥AE于点F.求证:AB=DF.15.如图,四边形ABCD中,AB=CD,AD=BC,对角线AC,BD相交于点O,且OA=OD.求证:四边形ABCD是矩形.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.17.如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.18.如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求证:四边形EFGH是菱形;(2)若EF=4,∠HEF=60°,求EG的长.19.如图,在菱形ABCD中,过点D作DE⊥AB于点E,作DF⊥BC于点F,连接EF.求证:(1)△ADE≌△CDF;(2)∠BEF=∠BFE.
相关试卷
这是一份初中数学中考复习 专题16二次函数的存在性问题(原卷版),共19页。
这是一份初中数学中考复习 专题16 二次函数的存在性问题(原卷版),共17页。
这是一份初中数学中考复习 专题16 角平分线四大模型(原卷版),共6页。试卷主要包含了角平分线上的点向两边作垂线,截取构造对称全等, 角平分线+垂线构造等腰三角形,角平分线+平行线等内容,欢迎下载使用。