初中数学中考复习 考点16 二次函数实际应用(原卷版)
展开
这是一份初中数学中考复习 考点16 二次函数实际应用(原卷版),共13页。
考点十六 二次函数实际应用【命题趋势】 在中考中,二次函数的实际应用是中考必考考点,常以解答题形式考查,往往会结合方程(组)与一次函数考查。 【中考考查重点】一、二次函数的实际应用-运动类型二、二次函数的实际应用-经济类型三、二次函数的实际应用-面积类型四、二次函数的实际应用-拱桥类型 考点一:运动类型考向1 落地模型1.(2021秋•松江区期末)一位运动员投掷铅球,如果铅球运行时离地面的高度为y(米)关于水平距离x(米)的函数解析式为y=﹣x2+x+,那么铅球运动过程中最高点离地面的距离为 米. 考向2 最值模型2.(2021秋•信阳期中)烟花厂为建党成立100周年特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣t2+8t.若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.6s 3.(2021秋•越秀区期末)飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t﹣1.5t2,则飞机停下前最后10秒滑行的距离是 米. 考点二:经济类型4.(2021秋•克东县期末)某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大值,则应涨价多少元?此时每天的最大盈利是多少? 5.(2021秋•郧西县期末)根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1,y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适? 考点三: 面积类型6.(2021秋•西湖区校级期中)在校园嘉年华中,九年级同学将对一块长20m,宽10m的场地进行布置,设计方案如图所示.阴影区域为绿化区(四块全等的矩形),空白区域为活动区,且4个出口宽度相同,其宽度不小于4m,不大于8m.设出口长均为x(m),活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时,活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2,绿化区布置成本为8元/m2,布置场地的预算不超过1850元,当x为整数时,请求出符合预算且使活动区面积最大的x值及此时的布置成本. 考点三: 拱桥类型7.(2021秋•建华区期末)如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是 .8.(2021秋•绿园区期末)一座石拱桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数关系为,当水面的宽度AB为16米时,水面离桥拱顶的高度OC为 m.9.(2021秋•营口期末)如图①,桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平). 1.(2021秋•房山区期末)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是 s时,小球最高;小球运动中的最大高度是 m.2.(2021秋•龙凤区期末)飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=20t﹣0.5t2,飞机着陆后滑行 m才能停下来.3.(2021秋•黔西南州期末)中国贵州省省内的射电望远镜(FAST)是目前世界上口径最大,精度最高的望远镜.根据有关资料显示,该望远镜的轴截面呈抛物线状,口径AB为500米,最低点P到口径面AB的距离是100米,若按如图(2)所示建立平面直角坐标系,则抛物线的解析式是 .4.(2021秋•和平区期末)如图,小明父亲想用长为100m的栅栏,再借助房屋的外墙围成一个矩形的羊圈ABCD.已知房屋外墙长40m,设矩形ABCD的边AB=xm,面积为Sm2.(1)请直接写出S与x之间的函数表达式为 ,并直接写出x的取值范围是 ;(2)求当x为多少m时,面积S为1050m2;(3)当AB,BC分别为多少米时,羊圈的面积最大?最大面积是多少? 5.(2021秋•龙江县校级期末)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)为了每月所获利润最大,该商品销售单价应定为多少元? 6.(2021秋•宽城区期末)某商场以每件20元的价格购进一种商品,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间满足一次函数关系,其图象如图所示.设该商场销售这种商品每天获利w(元).(1)求y与x之间的函数关系式.(2)求w与x之间的函数关系式.(3)该商场规定这种商品每件售价不低于进价,又不高于36元,当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少? 1.(2020•长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:P=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A.3.50分钟 B.4.05分钟 C.3.75分钟 D.4.25分钟2.(2021•黔西南州)小华酷爱足球运动.一次训练时,他将足球从地面向上踢出,足球距地面的高度h(m)与足球被踢出后经过的时间t(s)之间的关系为h=﹣5t2+12t,则足球距地面的最大高度是 m.3.(2020•日照)如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围. 4.(2020•呼伦贝尔)某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元(x≥50),月销量为y件,月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元?(3)当销售价定为每件多少元时会获得最大利润?求出最大利润. 5.(2021•贵阳)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B到水面的距离是4m.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为1.2m的打捞船径直向桥驶来,当船驶到桥拱下方且距O点0.4m时,桥下水位刚好在OA处,有一名身高1.68m的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平).(3)如图③,桥拱所在的函数图象是抛物线y=ax2+bx+c(a≠0),该抛物线在x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移m(m>0)个单位长度,平移后的函数图象在8≤x≤9时,y的值随x值的增大而减小,结合函数图象,求m的取值范围. 1.(2021•晋中模拟)在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系式为y=﹣x2+x+,由此可知小宇此次实心球训练的成绩为( )A.米 B.8米 C.10米 D.2米2.(2021•温州模拟)烟花厂为成都春节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是.若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3s B.4s C.5s D.6s3.(2021秋•岳池县期末)赵州桥的桥拱横截面是近似的抛物线形,其示意图如图所示,其解析式为y=﹣x2.当水面离桥拱顶的高度DO为4m时,水面宽度AB为 m.4.(2021秋•朝阳区期末)一名运动员在平地上推铅球,铅球出手时离地面的高度为米,出手后铅球离地面的高度y(米)与水平距离x(米)之间的函数关系式为,当铅球离地面的高度最大时,与出手点水平距离为5米,则该运动员推铅球的成绩为 米.5.(2021•连云港模拟)汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=﹣3t2+8t,汽车从刹车到停下来所用时间是 秒. 6.(2021•金堂县模拟)如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度为11m)围成中间隔有一道篱笆的矩形花圃,并且预留两个各1m的门,设花圃的宽AB为xm,面积为Sm2.(1)请用含x的代数式表示BC并求S与x的函数关系式;(2)若4<x<7,则S的最大值是多少?请说明理由. 7.(2021•盐城二模)疫情期间,某销售商在网上销售A、B两种型号的电脑“手写板”,其进价、售价和每日销量如表所示: 进价(元/个)售价(元/个)销量(个/日)A型400600200B型8001200400根据市场行情,该销售商对A型手写板降价销售,同时对B型手写板提高售价,此时发现A型手写板每降低5元就可多卖1个,B型手写板每提高5元就少卖1个.销售时保持每天销售总量不变,设其中A型手写板每天多销售x个,每天获得的总利润为y元.(1)求y与x之间的函数关系式,并直接写出x的取值范围;(2)要使每天的利润不低于212000元,求出x的取值范围;(3)该销售商决定每销售一个B型手写板,就捐助a元(0<a≤100)给受“新冠疫情”影响的困难学生,若当30≤x≤40时,每天的最大利润为203400元,求a的值. 8.(2021•即墨区一模)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O点为原点,OM所在的直线为x轴,OE所在的直线为y轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB,AD,CD为三根承重钢支架,A、D在抛物线上,B,C在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元? 9.(2021•路南区一模)某园林专业户计划投资种植树木及花卉,根据市场调查与预测,图1是种植树木的利润y与投资量x成正比例关系,图2是种植花卉的利润y与投资量x成二次函数关系.(注:利润与投资量的单位:万元)(1)分别根据投资种植树木及花卉的图象l1、l2,求利润y关于投资量x的函数关系式;(2)如果这位专业户共投入10万元资金种树木和花卉,其中投入x(x>0)万元种植花卉,那么他至少获得多少利润?(3)在(2)的基础上要保证获利在20万元以上,该园林专业户应怎样投资?
相关试卷
这是一份初中数学中考复习 专题六 函数的实际应用问题(原卷版),共3页。试卷主要包含了某商店有两种优惠活动,如图所示等内容,欢迎下载使用。
这是一份初中数学中考复习 题型04 二次函数的实际应用题(原卷版),共11页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 考点24 解直角三角形的实际应用(原卷版),共14页。