资料中包含下列文件,点击文件名可预览资料内容
还剩8页未读,
继续阅读
所属成套资源:中考数学一轮复习常考题型突破练习 (2份打包,原卷版+解析版)
成套系列资料,整套一键下载
中考数学一轮复习常考题型突破练习专题26 特殊的平行四边形-正方形(2份打包,原卷版+解析版)
展开这是一份中考数学一轮复习常考题型突破练习专题26 特殊的平行四边形-正方形(2份打包,原卷版+解析版),文件包含中考数学一轮复习常考题型突破练习专题26特殊的平行四边形-正方形原卷版doc、中考数学一轮复习常考题型突破练习专题26特殊的平行四边形-正方形解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
专题26 特殊的平行四边形-正方形
【考查题型】
【知识要点】
正方形的定义:四条边都相等,四个角都是直角的四边形叫做正方形.
正方形的性质:1)正方形具有平行四边形和菱形的所有性质。
2)正方形的四个角都是直角,四条边都相等。
3)正方形对边平行且相等。
4)正方形的对角线互相垂直平分且相等,对角线平分对角;
5)正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
6)正方形既是中心对称图形,也是轴对称图形.
正方形的判定:1)有一个角是直角的菱形是正方形;
2)对角线相等的菱形是正方形;
3)一组邻边相等的矩形是正方形;
4)对角线互相垂直的矩形是正方形;
5)对角线互相垂直平分且相等的四边形是正方形;
6)四条边都相等,四个角都是直角的四边形是正方形.
正方形的面积公式:边长×边长=×对角线×对角线
考查题型一 利用正方形的性质求线段长
典例1.(2022·浙江嘉兴·统考中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为( )
A.1cm B.2cm C.(-1)cm D.(2-1)cm
【答案】D
【分析】先求出BD,再根据平移性质求得=1cm,然后由求解即可.
【详解】解:由题意,BD=cm,
由平移性质得=1cm,
∴点D,之间的距离为==()cm,
故选:D.
【点睛】本题考查平移性质、正方形的性质,熟练掌握平移性质是解答的关键.
变式1-1.(2022·山东青岛·统考中考真题)如图,O为正方形对角线的中点,为等边三角形.若,则的长度为( )
A. B. C. D.
【答案】B
【分析】利用勾股定理求出AC的长度,再利用等边三角形的性质即可解决问题.
【详解】在正方形中:,
∴,
∵O为正方形对角线的中点,
∴,
∵为等边三角形, O为的中点,
∴,,
∴,
∴,
故选:B.
【点睛】此题考查了正方形的性质,勾股定理,等边三角形的性质,掌握以上知识点是解题的关键.
变式1-2.(2022·山东烟台·统考中考真题)如图,正方形ABCD边长为1,以AC为边作第2个正方形ACEF,再以CF为边作第3个正方形FCGH,…,按照这样的规律作下去,第6个正方形的边长为( )
A.(2)5 B.(2)6 C.()5 D.()6
【答案】C
【分析】根据勾股定理得出正方形的对角线是边长的,第1个正方形的边长为1,其对角线长为;第2个正方形的边长为,其对角线长为;第3个正方形的边长为,其对角线长为;•••;第n个正方形的边长为.所以,第6个正方形的边长.
【详解】解:由题知,第1个正方形的边长,
根据勾股定理得,第2个正方形的边长,
根据勾股定理得,第3个正方形的边长,
根据勾股定理得,第4个正方形的边长,
根据勾股定理得,第5个正方形的边长,
根据勾股定理得,第6个正方形的边长.
故选:C.
【点睛】本题主要考查勾股定理,根据勾股定理找到正方形边长之间的倍关系是解题的关键.
变式1-3.(2022·江苏泰州·统考中考真题)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2,d3,则d1+d2+d3的最小值为( )
A. B. C. D.
【答案】C
【分析】连接CF、CG、AE,证可得,当A、E、F、C四点共线时,即得最小值;
【详解】解:如图,连接CF、CG、AE,
∵
∴
在和中,
∵
∴
∴
∴
当时,最小,
∴d1+d2+d3的最小值为,
故选:C.
【点睛】本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.
变式1-4.(2022·贵州黔东南·统考中考真题)如图,在边长为2的等边三角形的外侧作正方形,过点作,垂足为,则的长为( )
A. B. C. D.
【答案】D
【分析】过点A分别作AG⊥BC于点G,AH⊥DF于点H,可得四边形AGFH是矩形,从而得到FH=AG,再由△ABC为等边三角形,可得∠BAG=30°,BG=1,从而得到,再证得∠DAH=∠BAG=30°,然后根据直角三角形的性质,即可求解.
【详解】解:如图,过点A分别作AG⊥BC于点G,AH⊥DF于点H,
∵DF⊥BC,
∴∠GFH=∠AHF=∠AGF=90°,
∴四边形AGFH是矩形,
∴FH=AG,
∵△ABC为等边三角形,
∴∠BAC=60°,BC=AB=2,
∴∠BAG=30°,BG=1,
∴,
∴,
在正方形ABED中,AD=AB=2,∠BAD=90°,
∴∠DAH=∠BAG=30°,
∴,
∴.
故选:D
【点睛】本题主要考查了等边三角形和正方形的性质,直角三角形的性质,熟练掌握等边三角形和正方形的性质,直角三角形的性质是解题的关键.
变式1-5.(2022·江苏无锡·统考中考真题)如图,正方形ABCD的边长为8,点E是CD的中点,HG垂直平分AE且分别交AE、BC于点H、G,则BG=________.
【答案】1
【分析】连接AG,EG,根据线段垂直平分线性质可得AG=EG,由点E是CD的中点,得CE=4,设BG=x,则CG=8-x,由勾股定理,可得出(8-x)2+42=82+x2,求解即可.
【详解】解:连接AG,EG,如图,
∵HG垂直平分AE,
∴AG=EG,
∵正方形ABCD的边长为8,
∴∠B=∠C=90°,AB=BC=CD=8,
∵点E是CD的中点,
∴CE=4,
设BG=x,则CG=8-x,
由勾股定理,得
EG2=CG2+CE2=(8-x)2+42,AG2=AB2+BG2=82+x2,
∴(8-x)2+42=82+x2,
解得:x=1,
故答案为:1.
【点睛】本题考查正方形的性质,线段垂直平分线的性质,勾股定理,熟练掌握正方形的性质、线段垂直平分线的性质、勾股定理及其运用是解题的关键.
变式1-6.(2022·海南·统考中考真题)如图,正方形中,点E、F分别在边上,,则___________;若的面积等于1,则的值是___________.
【答案】 60
【分析】由正方形的性质证明,即可得到,再由可得,即可求出.设,表示出的面积,解方程即可.
【详解】∵正方形
∴,
∵
∴(HL)
∴,
∵,
∴
∴
设
∴
∴
∵的面积等于1
∴,解得,(舍去)
∴
故答案为:60;.
【点睛】本题考查正方形的性质、全等三角形的判定与性质、30°直角三角形的性质,熟练掌握正方形的性质,证明三角形全等是解题的关键.
变式1-7.(2022·江苏常州·统考中考真题)如图,将一个边长为的正方形活动框架(边框粗细忽略不计)扭动成四边形,对角线是两根橡皮筋,其拉伸长度达到时才会断裂.若,则橡皮筋_____断裂(填“会”或“不会”,参考数据:).
【答案】不会
【分析】设扭动后对角线的交点为,根据正方形的性质,得出扭动后的四边形为菱形,利用菱形的性质及条件,得出为等边三角形,利用勾股定理算出,从而得到,再比较即可判断.
【详解】解:设扭动后对角线的交点为,如下图:
,
根据正方形的性质得,
得出扭动后的四边形四边相等为菱形,
cm,
为等边三角形,
cm,
cm,
cm,
根据菱形的对角线的性质:(cm),
,
不会断裂,
故答案为:不会.
【点睛】本题考查了正方形的性质、菱形的判定及性质、等边三角形、勾股定理,解题的关键是要掌握菱形的判定及性质.
变式1-8.(2022·四川遂宁·统考中考真题)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为______.
【答案】4
【分析】连接,根据正六边形的特点可得,根据含30度角的直角三角形的性质即可求解.
【详解】如图,连接,
正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上
正六边形每个内角为,直线为对称轴
,AB=AF
则
则,
正方形BMGH的边长为6
,
设,则AF=2x,
所以
解得
故答案为:4
【点睛】本题考查了正多边形的性质,正方形的性质,含30度角的直角三角形的性质,掌握以上知识是解题的关键.
变式1-9.(2022·湖北随州·统考中考真题)如图,在平行四边形ABCD中,点E,F分别在边AB,CD上,且四边形BEDF为正方形.
(1)求证;
(2)已知平行四边形ABCD的面积为,.求的长.
【答案】(1)证明见解析
(2)
【分析】(1)直接根据已知条件证明和全等即可得出答案.
(2)由平行四边形的面积公式求出,然后即可得出答案.
【详解】(1)四边形是正方形,是平行四边形,
,,,
在和中,
,
,
;
(2)由题意可知:,
,
,
,,
由(1)得.
【点睛】本题考查平行四边形的性质、正方形的性质及三角形全等的判定,解题的关键是熟练掌握相关性质并能灵活运用.
考查题型二 利用正方形的性质求面积
典例2.(2022·贵州遵义·统考中考真题)如图,在正方形中,和交于点,过点的直线交于点(不与,重合),交于点.以点为圆心,为半径的圆交直线于点,.若,则图中阴影部分的面积为( )
A. B. C. D.
【答案】B
【分析】根据题意可得四边形的面积等于正方形面积的一半,根据阴影部分面积等于半圆减去四边形的面积和弓形的面积即可求解.
【详解】解:在正方形中,,
的半径为:
过点,根据中心对称可得四边形的面积等于正方形面积的一半,
又
阴影部分面积为:
故选:B.
【点睛】本题考查了正方形的性质,求扇形面积,掌握以上知识是解题的关键.
变式2-1(2022·贵州铜仁·统考中考真题)如图,在边长为6的正方形中,以为直径画半圆,则阴影部分的面积是( )
A.9 B.6 C.3 D.12
【答案】A
【分析】设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,证明BE=CE,得到弓形BE的面积=弓形CE的面积,则.
【详解】解:设AC与半圆交于点E,半圆的圆心为O,连接BE,OE,
∵四边形ABCD是正方形,
∴∠OCE=45°,
∵OE=OC,
∴∠OEC=∠OCE=45°,
∴∠EOC=90°,
∴OE垂直平分BC,
∴BE=CE,
∴弓形BE的面积=弓形CE的面积,
∴,
故选A.
【点睛】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.
变式2-2.(2022·内蒙古·中考真题)如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形,则它们的公共部分的面积等于( )
A.1﹣ B.1﹣ C. D.
【答案】D
【分析】此题只需把公共部分分割成两个三角形,根据旋转的旋转发现两个三角形全等,从而求得直角三角形的边,再进一步计算其面积.
【详解】设CD与B′C′相交于点O,连接OA.
根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.
在Rt△ADO和Rt△AB′O中,AD=AB′,AO=AO,
∴Rt△ADO≌Rt△AB′O.
∴∠OAD=∠OAB′=30°.
设,则,
又∵AD=1,
,
即,
解得:(不符合题意,舍),
∴OD=.
∴公共部分的面积=2×××1=1×=.
故选:D.
【点睛】本题考查了图形的旋转,直角三角形三角形全等的证明,勾股定理,作出辅助线求证Rt△ADO≌Rt△AB′O是解题的关键.
变式2-3.(2021·山东枣庄·统考中考真题)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为( )
A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π
【答案】B
【分析】根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆(扇形)的面积减去以1为半径的半圆(扇形)的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆(扇形)的面积,本题得以解决.
【详解】解:由题意可得,
阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,
故选:B.
【点睛】本题主要考查运用正方形的性质,圆的面积公式(或扇形的面积公式),正方形的面积公式计算不规则几何图形的面积,解题的关键是理解题意,观察图形,合理分割,转化为规则图形的面积和差进行计算.
变式2-4.(2022·湖南永州·统考中考真题)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积是25,小正方形的面积是1,则______.
【答案】3
【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH=BG=x,结合图形得出AE=x-1,利用勾股定理求解即可得出结果.
【详解】解:∵大正方形的面积是25,小正方形的面积是1,
∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,
根据题意,设AF=DE=CH=BG=x,
则AE=x-1,
在Rt∆AED中,
,
即,
解得:x=4(负值已经舍去),
∴x-1=3,
故答案为:3.
【点睛】题目主要考查正方形的性质,勾股定理解三角形,一元二次方程的应用等,理解题意,综合运用这些知识点是解题关键.
变式2-5.(2022·湖南·统考中考真题)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形的面积是100,小正方形的面积是4,那么__.
【答案】##0.75
【分析】根据两个正方形的面积可得,,设,得到,由勾股定理得,解方程可得x的值,从而解决问题.
【详解】解:∵大正方形ABCD的面积是100,
∴.
∵小正方形EFGH的面积是4,
∴小正方形EFGH的边长为2,
∴,
设,
则,
由勾股定理得,,
解得或(负值舍去),
∴,,
∴.
故答案为:.
【点睛】本题主要考查了正方形的性质,勾股定理,三角函数等知识,利用勾股定理列方程求出AF的长是解题的关键.
考查题型三 与正方形有关的折叠问题
典例3.(2022·贵州六盘水·统考中考真题)如图,将一张长方形纸对折,再对折,然后沿图中虚线剪下,剪下的图形展开后可得到( )
A.三角形 B.梯形 C.正方形 D.五边形
【答案】C
【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以进行从题后的答案中选择.
【详解】解:由题意知,对折实际上就是对称,对折2次的话,剪下应有4条边,并且这4条边还相等,
且每个角等于90度,
其只有正方形满足这一条件.
故选C.
【点睛】此题考查了利用对称设计图案以及菱形的判定,关键是根据对折实际上就是轴对称性质的运用进行解答.也可动手折纸求解.
变式3-1.(2021·黑龙江牡丹江·统考中考真题)如图,正方形ABCD的边长为3,E为BC边上一点,BE=1.将正方形沿GF折叠,使点A恰好与点E重合,连接AF,EF,GE,则四边形AGEF的面积为( )
A.2 B.2 C.6 D.5
【答案】D
【分析】作FH⊥AB于H,交AE于P,设AG=GE=x,在Rt△BGE中求出x,在Rt△ABE中求出AE,再证明△ABE≌△FHG,得到FG=AE,然后根据S四边形AGEF=S△AGF+S△EGF求解即可
【详解】解:作FH⊥AB于H,交AE于P,则四边形ADFH是矩形,由折叠的性质可知,AG=GE,AE⊥GF,AO=EO.
设AG=GE=x,则BG=3-x,
在Rt△BGE中,
∵BE2+BG2=GE2,
∴12+(3-x)2=x2,
∴x=.
在Rt△ABE中,
∵AB2+BE2=AE2,
∴32+12=AE2,
∴AE=.
∵∠HAP+∠APH=90°,∠OFP+∠OPF=90°,∠APH=∠OPF,
∴∠HAP=∠OFP,
∵四边形ADFH是矩形,
∴AB=AD=HF.
在△ABE和△FHG中,
,
∴△ABE≌△FHG,
∴FG=AE=,
∴S四边形AGEF=S△AGF+S△EGF
=
=
=
=
=5.
故选D.
【点睛】本题考查了折叠的性质,正方形的性质,矩形的判定与性质,三角形的面积,以及勾股定理等知识,熟练掌握折叠的性质是解答本题的关键.
变式3-2.(2022·山东泰安·统考中考真题)如图,四边形为正方形,点E是的中点,将正方形沿折叠,得到点B的对应点为点F,延长交线段于点P,若,则的长度为___________.
【答案】2
【分析】连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.
【详解】解:连接AP,如图所示,
∵四边形ABCD为正方形,
∴AB=BC=AD=6,∠B=∠C=∠D=90°,
∵点E是BC的中点,
∴BE=CE=AB=3,
由翻折可知:AF=AB,EF=BE=3,∠AFE=∠B=90°,
∴AD=AF,∠AFP=∠D=90°,
在Rt△AFP和Rt△ADP中,
,
∴Rt△AFP≌Rt△ADP(HL),
∴PF=PD,
设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,
在Rt△PEC中,根据勾股定理得:EP2=EC2+CP2,
∴(3+x)2=32+(6−x)2,解得x=2,则DP的长度为2,
故答案为:2.
【点睛】本题考查了翻折变换,正方形的性质,勾股定理,解决本题的关键是掌握翻折的性质.
变式3-3.(2022·贵州铜仁·统考中考真题)如图,在边长为2的正方形ABCD中,点E为AD的中点,将△CDE沿CE翻折得△CME,点M落在四边形ABCE内.点N为线段CE上的动点,过点N作NP//EM交MC于点P,则MN+NP的最小值为________.
【答案】
【分析】过点M作MF⊥CD于F,推出MN+NP的最小值为MF的长,证明四边形DEMG为菱形,利用相似三角形的判定和性质求解即可.
【详解】解:作点P关于CE的对称点P′,
由折叠的性质知CE是∠DCM的平分线,
∴点P′在CD上,
过点M作MF⊥CD于F,交CE于点G,
∵MN+NP=MN+NP′≤MF,
∴MN+NP的最小值为MF的长,
连接DG,DM,
由折叠的性质知CE为线段 DM的垂直平分线,
∵AD=CD=2,DE=1,
∴CE==,
∵CE×DO=CD×DE,
∴DO=,
∴EO=,
∵MF⊥CD,∠EDC=90°,
∴DE∥MF,
∴∠EDO=∠GMO,
∵CE为线段DM的垂直平分线,
∴DO=OM,∠DOE=∠MOG=90°,
∴△DOE≌△MOG,
∴DE=GM,
∴四边形DEMG为平行四边形,
∵∠MOG=90°,
∴四边形DEMG为菱形,
∴EG=2OE=,GM= DE=1,
∴CG=,
∵DE∥MF,即DE∥GF,
∴△CFG∽△CDE,
∴,即,
∴FG=,
∴MF=1+=,
∴MN+NP的最小值为.
故答案为:.
【点睛】此题主要考查轴对称在解决线段和最小的问题,熟悉对称点的运用和画法,知道何时线段和最小,会运用勾股定理和相似三角形的判定和性质求线段长度是解题的关键.
变式3-4.(2021·山东泰安·统考中考真题)如图,将矩形纸片折叠(),使落在上,为折痕,然后将矩形纸片展开铺在一个平面上,E点不动,将边折起,使点B落在上的点G处,连接,若,,则的长为________.
【答案】
【分析】根据矩形的性质和正方形的性质,证明,从而,又因为,代入求解即可.
【详解】解:∵四边形是矩形,,
∴,,,且四边形是正方形,
∴,
∴,
又∵,
∴,
∴
又∵(折叠,
∴,, ,
设,则,
∴ ,
又∵是正方形对角线,
∴ ,
∴ ,
∴ ,
∴ ,解得:,即 ,
∴.
故答案为:
【点睛】本题考查的是矩形的性质,正方形的性质和判定,三角形全等等相关知识点,根据题意找到等量关系转换是解题的关键.
考查题型四 添加一个条件使四边形是正方形
典例4.(2021·广西玉林·统考中考真题)一个四边形顺次添加下列中的三个条件便得到正方形:
a.两组对边分别相等 b.一组对边平行且相等
c.一组邻边相等 d.一个角是直角
顺次添加的条件:①a→c→d②b→d→c③a→b→c
则正确的是:( )
A.仅① B.仅③ C.①② D.②③
【答案】C
【分析】根据题意及正方形的判定定理可直接进行排除选项.
【详解】解:①由两组对边分别相等可得该四边形是平行四边形,添加一组邻边相等可得该四边形是菱形,再添加一个角是直角则可得该四边形是正方形;正确,故符合题意;
②由一组对边平行且相等可得该四边形是平行四边形,添加一个角是直角可得该四边形是矩形,再添加一组邻边相等则可得该四边形是正方形;正确,故符合题意;
③a、b都为平行四边形的判定定理,故不能判定该四边形是正方形,故错误,不符合题意;
∴正确的有①②;
故选C.
【点睛】本题主要考查正方形的判定,熟练掌握正方形的判定定理是解题的关键.
变式4-1.(2021·黑龙江·统考中考真题)如图,在矩形中,对角线相交于点,在不添加任何辅助线的情况下,请你添加一个条件______,使矩形是正方形.
【答案】AC⊥BD(答案不唯一)
【分析】根据正方形的判定定理可直接进行求解.
【详解】解:∵四边形是矩形,
∴根据“一组邻边相等的矩形是正方形”可添加:或或或,
根据“对角线互相垂直的矩形是正方形”可添加:AC⊥BD,
故答案为AC⊥BD(答案不唯一).
【点睛】本题主要考查正方形的判定定理,熟练掌握正方形的判定是解题的关键.
考查题型五 与正方形有关的证明
典例5.(2022·湖南邵阳·统考中考真题)如图,在菱形中,对角线,相交于点,点,在对角线上,且,.
求证:四边形是正方形.
【答案】证明过程见解析
【分析】菱形的两条对角线相互垂直且平分,再根据两条对角线相互垂直平分且相等的四边形是正方形即可证明四边形AECF是正方形.
【详解】证明:∵ 四边形ABCD是菱形
∴ OA=OC,OB=OD且AC⊥BD,
又∵ BE=DF
∴ OB-BE=OD-DF
即OE=OF
∵OE=OA
∴OA=OC=OE=OF且AC=EF
又∵AC⊥EF
∴ 四边形DEBF是正方形.
【点睛】此题考查了菱形的性质和正方形的判定,解题的关键是掌握上述知识.
变式5-1.(2021·内蒙古呼伦贝尔·统考中考真题)如图,是的角平分线,,,垂足分别是E、F,连接,与相交千点H.
(1)求证:;
(2)满足什么条件时,四边形是正方形?说明理由.
【答案】(1)见解析;(2)满足∠BAC=90°时,四边形是正方形,理由见解析
【分析】(1)根据角平分线的的性质定理证得DE=DF,再根据HL定理证明△AED≌△AFD,则有AE=AF,利用等腰三角形的三线合一性质即可证得结论;
(2)只需证得四边形AEDF是矩形即可,
【详解】解:(1)∵是的角平分线,,,
∴DE=DF,∠AED=∠AFD=90°,
又∵AD=AD,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,又是的角平分线,
∴AD⊥EF;
(2)满足∠BAC=90°时,四边形是正方形,
理由:∵∠AED=∠AFD=90°,∠BAC=90°,
∴四边形AEDF是矩形,
又∵AE=AF,
∴四边形AEDF是正方形.
【点睛】本题考查角平分线的性质、全等三角形的判定与性质、等腰三角形的三线合一性质、矩形的判定、正方形的判定,熟练掌握相关知识间的联系和运用是解答的关键.
变式5-2(2021·甘肃武威·统考中考真题)问题解决:如图1,在矩形中,点分别在边上,于点.
(1)求证:四边形是正方形;
(2)延长到点,使得,判断的形状,并说明理由.
类比迁移:如图2,在菱形中,点分别在边上,与相交于点,,求的长.
【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8
【分析】问题解决:(1)证明矩形ABCD是正方形,则只需证明一组邻边相等即可.结合和可知,再利用矩形的边角性质即可证明,即,即可求解;
(2)由(1)中结论可知,再结合已知,即可证明,从而求得是等腰三角形;
类比迁移:由前面问题的结论想到延长到点,使得,结合菱形的性质,可以得到,再结合已知可得等边,最后利用线段BF长度即可求解.
【详解】解:问题解决:
(1)证明:如图1,∵四边形是矩形,
.
.
.
.
又.
∴矩形是正方形.
(2)是等腰三角形.理由如下:
,
.
又,即是等腰三角形.
类比迁移:
如图2,延长到点,使得,连接.
∵四边形是菱形,
.
.
.
又.
是等边三角形,
,
.
【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.
变式5-3.(2021·江苏扬州·统考中考真题)如图,在中,的角平分线交于点D,.
(1)试判断四边形的形状,并说明理由;
(2)若,且,求四边形的面积.
【答案】(1)菱形,理由见解析;(2)4
【分析】(1)根据DE∥AB,DF∥AC判定四边形AFDE是平行四边形,再根据平行线的性质和角平分线的定义得到∠EDA=∠EAD,可得AE=DE,即可证明;
(2)根据∠BAC=90°得到菱形AFDE是正方形,根据对角线AD求出边长,再根据面积公式计算即可.
【详解】解:(1)四边形AFDE是菱形,理由是:
∵DE∥AB,DF∥AC,
∴四边形AFDE是平行四边形,
∵AD平分∠BAC,
∴∠FAD=∠EAD,
∵DE∥AB,
∴∠EDA=∠FAD,
∴∠EDA=∠EAD,
∴AE=DE,
∴平行四边形AFDE是菱形;
(2)∵∠BAC=90°,
∴四边形AFDE是正方形,
∵AD=,
∴AF=DF=DE=AE==2,
∴四边形AFDE的面积为2×2=4.
【点睛】本题考查了菱形的判定,正方形的判定和性质,平行线的性质,角平分线的定义,解题的关键是掌握特殊四边形的判定方法.
考查题型六 正方形性质与判定综合
典例6.(2022·辽宁鞍山·统考中考真题)如图,在正方形中,点为的中点,,交于点,于点,平分,分别交,于点,,延长交于点,连接.下列结论:①;②;③;④.其中正确的是_________.(填序号即可).
【答案】①③④
【分析】设正方形ABCD的边长为2a,证明∠CDF=∠ECB,求出,可得①正确;根据平行线分线段成比例结合勾股定理求出,,,进而求出可得②错误;过点G作GQ⊥DF于点Q,GP⊥EC于点P,用a表示出GM,GF,FN可得③正确;证明∠BEF=∠HCD,求出,可得④正确.
【详解】解:如图,过点G作GQ⊥DF于点Q,GP⊥EC于点P,设正方形ABCD的边长为2a.
∵四边形ABCD是正方形,
∴∠ABC=∠BCD=90°,
∵AE=EB=a,BC=2a,
∴,
∵DF⊥CE,
∴∠CFD=90°,
∴∠ECB+∠DCF=90°,
∵∠DCF+∠CDF=90°,
∴∠CDF=∠ECB,
∴,故①正确,
∵BECD,
∴,
∵,,
∴,, ,
在Rt△CDF中,,CD=2a,
∴,,
∴,
∴,
∵,
∴,故②错误;
∵FM平分∠DFE,GQ⊥DF,GP⊥EC,
∴GQ=GP,
∵,
∴,
∴,
∴BG=DG,
∵DMBN,
∴,
∴GM=GN,
∵,
∴,
∴,
∵∠GPF=∠PFQ=∠FQG=90°,GP=GQ,
∴四边形GPFQ是正方形,
∴,
过点N作NJ⊥CE于点J,设FJ=NJ=m,则CJ=2m,
∴,
∴,
∴,
∴MG=GN=GF+FN=,
∴MG:GF:FN=,故③正确,
∵,
∴∠BEF=∠HCD,
∵,,
∴,
∴△BEF∽△HCD,故④正确.
故答案为:①③④.
【点睛】本题考查了平行线分线段成比例,相似三角形的判定和性质,正方形的判定和性质,解直角三角形,勾股定理,角平分线的性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.
变式6-1.(2021·四川广元·统考中考真题)如图,在正方形中,点O是对角线的中点,点P在线段上,连接并延长交于点E,过点P作交于点F,连接、,交于G,现有以下结论:①;②;③;④为定值;⑤.以上结论正确的有________(填入正确的序号即可).
【答案】①②③⑤
【分析】由题意易得∠APF=∠ABC=∠ADE=∠C=90°,AD=AB,∠ABD=45°,对于①:易知点A、B、F、P四点共圆,然后可得∠AFP=∠ABD=45°,则问题可判定;对于②:把△AED绕点A顺时针旋转90°得到△ABH,则有DE=BH,∠DAE=∠BAH,然后易得△AEF≌△AHF,则有HF=EF,则可判定;对于③:连接AC,在BP上截取BM=DP,连接AM,易得OB=OD,OP=OM,然后易证△AOP∽△ABF,进而问题可求解;对于④:过点A作AN⊥EF于点N,则由题意可得AN=AB,若△AEF的面积为定值,则EF为定值,进而问题可求解;对于⑤由③可得,进而可得△APG∽△AFE,然后可得相似比为,最后根据相似三角形的面积比与相似比的关系可求解.
【详解】解:∵四边形是正方形,,
∴∠APF=∠ABC=∠ADE=∠C=90°,AD=AB,∠ABD=45°,
①∵,
∴由四边形内角和可得,
∴点A、B、F、P四点共圆,
∴∠AFP=∠ABD=45°,
∴△APF是等腰直角三角形,
∴,故①正确;
②把△AED绕点A顺时针旋转90°得到△ABH,如图所示:
∴DE=BH,∠DAE=∠BAH,∠HAE=90°,AH=AE,
∴,
∵AF=AF,
∴△AEF≌△AHF(SAS),
∴HF=EF,
∵,
∴,故②正确;
③连接AC,在BP上截取BM=DP,连接AM,如图所示:
∵点O是对角线的中点,
∴OB=OD,,
∴OP=OM,△AOB是等腰直角三角形,
∴,
由①可得点A、B、F、P四点共圆,
∴,
∵,
∴△AOP∽△ABF,
∴,
∴,
∵,
∴,故③正确;
④过点A作AN⊥EF于点N,如图所示:
由②可得∠AFB=∠AFN,
∵∠ABF=∠ANF=90°,AF=AF,
∴△ABF≌△ANF(AAS),
∴AN=AB,
若△AEF的面积为定值,则EF为定值,
∵点P在线段上,
∴的长不可能为定值,故④错误;
⑤由③可得,
∵∠AFB=∠AFN=∠APG,∠FAE=∠PAG,
∴△APG∽△AFE,
∴,
∴,
∴,
∴,故⑤正确;
综上所述:以上结论正确的有①②③⑤;
故答案为①②③⑤.
【点睛】本题主要考查正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定,熟练掌握正方形的性质、旋转的性质、圆的基本性质及相似三角形的性质与判定是解题的关键.
变式6-2.(2021·湖南张家界·统考中考真题)如图,在正方形外取一点,连接,,,过点作的垂线交于点,若,.下列结论:①;②;③点到直线的距离为;④,其中正确结论的序号为______.
【答案】①②④
【分析】利用同角的余角相等可得∠EDC=∠PDA,利用SAS可证明,可得①正确;②根据全等三角形的性质可得∠APD=∠CED,根据等腰直角三角形的性质可得∠DPE=∠DEP=45°,即可得出∠PEC=90°,可得②正确;过C作CF⊥DE,交DE的延长线于F,利用勾股定理可求出CE的长,根据△DEP是等腰直角三角形,可证△CEF是等腰直角三角形,根据等腰直角三角形的性质即可求出CF的长,可得③错误;④由③可知EF的长,即可得出DF的长,利用勾股定理可求出CD的长,即可求出正方形ABCD的面积,可得④正确,综上即可得答案.
【详解】∵四边形ABCD为正方形,PD⊥DE,
∴∠PDA+∠PDC=90°,∠EDC+∠PDC=90°,AD=CD,
∴∠EDC=∠PDA,
在△APD和△CED中,
∴△APD≌△CED,故①正确,
∴∠APD=∠DEC,
∵DP=DE,∠PDE=90°,
∴∠DPE=∠DEP=45°,
∴∠APD=∠DEC=135°,
∴∠PEC=∠DEC-∠DEP=90°,
∴AE⊥CE,故②正确,
如图,过C作CF⊥DE,交DE的延长线于F,
∵,∠PDE=90°,
∴PE=,
∵,∠PEC=90°,
∴CE==2,
∵∠DEP=45°,∠PEC=90°,
∴∠FEC=45°,
∵∠EFC=90°,
∴△CEF是等腰直角三角形,
∴CF=EF==,
∴点到直线的距离为,故③错误,
∴DF=EF+DE=+1,
∴CD2===,
∴,故④正确,
综上所述:正确的结论有①②④,
故答案为:①②④
【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、正方形的性质、正方形面积公式、勾股定理的运用等知识,熟练掌握相关判定定理和性质是解题的关键.
变式6-3.(2021·湖北黄石·统考中考真题)如图,在正方形中,点、分别在边、上,且,交于点,交于点.
(1)若正方形的边长为2,则的周长是______.
(2)下列结论:①;②若是的中点,则;③连接,则为等腰直角三角形.其中正确结论的序号是______(把你认为所有正确的都填上).
【答案】 4 ①③
【分析】(1)将AF绕点A顺时针旋转90°,F点落在G点处,证明,,进而得到,即可求出的周长;
(2)对于①:将AM绕点A逆时针旋转90°,M点落在H点处,证明,即可判断;
对于②:设正方形边长为2,BE=x,则EF=x+1,CE=2-x,在Rt△EFC中使用勾股定理求出x,在利用∠AEF=∠AEB即可求解;
对于③:证明A、M、F、D四点共圆,得到∠AFM=∠ADM=45°进而求解.
【详解】解:(1)将AF绕点A顺时针旋转90°,F点落在G点处,如下图所示:
∵,且
∴,
在和中:,
∴,
∴,
又∠1+∠2=45°,∠3+∠2=45°,
∴∠1=∠3,
∵ABCD为正方形,
∴AD=AB,
在和中:,
∴,
∴
∴,
∴、、三点共线,
∴,
∴,
故答案为:;
(2)对于①:将AM绕点A逆时针旋转90°,M点落在H点处,如下图所示:
∵∠1+∠2=45°,∠1+∠4=∠EAH-∠EAF=45°,
∴∠2=∠4,
在和中: ,
∴,
∴,,
∴,
∴在中,由勾股定理得:,
在和中: ,
∴,
∴,
∴,故①正确;
对于②:由(1)中可知:EF=BE+DF,设正方形边长为2,当F为CD中点时,
GB=DF=1,CF=1,设BE=x,则EF=x+1,CE=2-x,
在Rt△EFC中,由勾股定理:,
∴,解得,即,
∴,故②错误;
对于③:如下图所示:
∵∠EAF=∠BDC=45°,
∴A、M、F、D四点共圆,
∴∠AFM=∠ADM=45°,
∴△AMF为等腰直角三角形,故③正确;
故答案为:①③.
【点睛】本题考查了正方形的性质,旋转的性质,三角形全等的证明,四点共圆的判定方法等,属于综合题,具有一定难度,熟练掌握各图形的性质是解决本题的关键.
变式6-4.(2020·内蒙古鄂尔多斯·统考中考真题)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
①点M位置变化,使得∠DHC=60°时,2BE=DM;
②无论点M运动到何处,都有DM=HM;
③在点M的运动过程中,四边形CEMD不可能成为菱形;
④无论点M运动到何处,∠CHM一定大于135°.
以上结论正确的有_____(把所有正确结论的序号都填上).
【答案】①②③④
【分析】①正确.证明∠ADM=30°,即可得出结论.
②正确.证明△DHM是等腰直角三角形即可.
③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.
④正确.证明∠AHM<∠BAC=45°,即可判断.
【详解】解:如图,连接DH,HM.
由题可得,AM=BE,
∴AB=EM=AD,
∵四边形ABCD是正方形,EH⊥AC,
∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
∴EH=AH,
∴△MEH≌△DAH(SAS),
∴∠MHE=∠DHA,MH=DH,
∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
∴DM=HM,故②正确;
当∠DHC=60°时,∠ADH=60°﹣45°=15°,
∴∠ADM=45°﹣15°=30°,
∴Rt△ADM中,DM=2AM,
即DM=2BE,故①正确;
∵CD∥EM,EC∥DM,
∴四边形CEMD是平行四边形,
∵DM>AD,AD=CD,
∴DM>CD,
∴四边形CEMD不可能是菱形,故③正确,
∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
∴∠AHM<∠BAC=45°,
∴∠CHM>135°,故④正确;
由上可得正确结论的序号为①②③.
故答案为:①②③④.
【点睛】本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.
相关试卷
中考数学一轮复习满分突破考点题型专练专题26 特殊的平行四边形-正方形(2份打包,原卷版+解析版):
这是一份中考数学一轮复习满分突破考点题型专练专题26 特殊的平行四边形-正方形(2份打包,原卷版+解析版),文件包含中考数学一轮复习满分突破考点题型专练专题26特殊的平行四边形-正方形原卷版doc、中考数学一轮复习满分突破考点题型专练专题26特殊的平行四边形-正方形解析版doc等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
中考数学一轮复习常考题型突破练习专题38 概率(2份打包,原卷版+解析版):
这是一份中考数学一轮复习常考题型突破练习专题38 概率(2份打包,原卷版+解析版),文件包含中考数学一轮复习常考题型突破练习专题38概率原卷版doc、中考数学一轮复习常考题型突破练习专题38概率解析版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。
中考数学一轮复习常考题型突破练习专题33 图形的相似(2份打包,原卷版+解析版):
这是一份中考数学一轮复习常考题型突破练习专题33 图形的相似(2份打包,原卷版+解析版),文件包含中考数学一轮复习常考题型突破练习专题33图形的相似原卷版doc、中考数学一轮复习常考题型突破练习专题33图形的相似解析版doc等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。