年终活动
搜索
    上传资料 赚现金

    重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析

    重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析第1页
    重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析第2页
    重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析

    展开

    这是一份重庆綦江南川巴县2022年中考数学对点突破模拟试卷含解析,共28页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
    A.(5,5) B.(5,4) C.(6,4) D.(6,5)
    2.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于(   )

    A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶5
    3.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为( )
    A. B. C. D.
    4.我省2013年的快递业务量为1.2亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2012年增速位居全国第一.若2015年的快递业务量达到2.5亿件,设2012年与2013年这两年的平均增长率为x,则下列方程正确的是( )
    A.1.2(1+x)=2.5
    B.1.2(1+2x)=2.5
    C.1.2(1+x)2=2.5
    D.1.2(1+x)+1.2(1+x)2=2.5
    5.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为(  )
    A.30° B.60° C.120° D.180°
    6.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    7.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
    A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
    8.如图,AB∥CD,直线EF与AB、CD分别相交于E、F,AM⊥EF于点M,若∠EAM=10°,那么∠CFE等于(  )

    A.80° B.85° C.100° D.170°
    9.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是(  )

    A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
    10.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
    A. B.或
    C. D.或
    11.如图,A、B为⊙O上两点,D为弧AB的中点,C在弧AD上,且∠ACB=120°,DE⊥BC于E,若AC=DE,则的值为( )

    A.3 B. C. D.
    12.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为

    A.x>1 B.﹣2<x<1
    C.﹣2<x<0或x>1 D.x<﹣2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .

    14.如图,在ABC中,AB=AC=6,∠BAC=90°,点D、E为BC边上的两点,分别沿AD、AE折叠,B、C两点重合于点F,若DE=5,则AD的长为_____.

    15.已知关于x的一元二次方程(k﹣5)x2﹣2x+2=0有实根,则k的取值范围为_____.
    16.如图,a∥b,∠1=40°,∠2=80°,则∠3=  度.

    17.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
    18.(2017四川省攀枝花市)若关于x的分式方程无解,则实数m=_______.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)(问题情境)
    张老师给爱好学习的小军和小俊提出这样的一个问题:如图1,在△ABC中,AB=AC,点P为边BC上任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D,E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.

    小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
    小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.
    [变式探究]
    如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;
    请运用上述解答中所积累的经验和方法完成下列两题:
    [结论运用]
    如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;
    [迁移拓展]
    图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2dm,AD=3dm,BD=dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.
    20.(6分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
    大江东去浪淘尽,千古风流数人物;
    而立之年督东吴,早逝英年两位数;
    十位恰小个位三,个位平方与寿符;
    哪位学子算得快,多少年华属周瑜?
    21.(6分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间(单位:小时),将学生分成五类: 类( ),类(),类(),类(),类(),绘制成尚不完整的条形统计图如图11.

    根据以上信息,解答下列问题: 类学生有 人,补全条形统计图;类学生人数占被调查总人数的 %;从该班做义工时间在的学生中任选2人,求这2人做义工时间都在 中的概率.
    22.(8分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;直接写出点A1的坐标,点A2的坐标.

    23.(8分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.

    24.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
    (1)求抛物线的解析式;
    (2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
    (3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

    25.(10分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
    (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
    (2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
    26.(12分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.证明:DE为⊙O的切线;连接OE,若BC=4,求△OEC的面积.

    27.(12分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
    【详解】
    解:∵四边形ABCD是矩形
    ∴AB∥CD,AB=CD,AD=BC,AD∥BC,
    ∵A(1,4)、B(1,1)、C(5,1),
    ∴AB∥CD∥y轴,AD∥BC∥x轴
    ∴点D坐标为(5,4)
    故选B.
    【点睛】
    本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
    2、C
    【解析】
    作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.
    【详解】
    作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,

    ∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
    ∴OD=OE=OF,
    ∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
    故选C.
    【点睛】
    考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
    3、D
    【解析】
    分析:根据乘私家车平均速度是乘公交车平均速度的2.5倍,乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,利用时间得出等式方程即可.
    详解:设乘公交车平均每小时走x千米,根据题意可列方程为:

    故选D.
    点睛:此题主要考查了由实际问题抽象出分式方程,解题关键是正确找出题目中的相等关系,用代数式表示出相等关系中的各个部分,列出方程即可.
    4、C
    【解析】
    试题解析:设2015年与2016年这两年的平均增长率为x,由题意得:
    1.2(1+x)2=2.5,
    故选C.
    5、C
    【解析】
    求出正三角形的中心角即可得解
    【详解】
    正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,
    故选C.
    【点睛】
    本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键
    6、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    7、D
    【解析】
    直接利用配方法将原式变形,进而利用平移规律得出答案.
    【详解】
    y=x2﹣6x+21
    =(x2﹣12x)+21
    =[(x﹣6)2﹣16]+21
    =(x﹣6)2+1,
    故y=(x﹣6)2+1,向左平移2个单位后,
    得到新抛物线的解析式为:y=(x﹣4)2+1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.
    8、C
    【解析】
    根据题意,求出∠AEM,再根据AB∥CD,得出∠AEM与∠CFE互补,求出∠CFE.
    【详解】
    ∵AM⊥EF,∠EAM=10°
    ∴∠AEM=80°
    又∵AB∥CD
    ∴∠AEM+∠CFE=180°
    ∴∠CFE=100°.
    故选C.
    【点睛】
    本题考查三角形内角和与两条直线平行内错角相等.
    9、C
    【解析】
    解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.
    点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.
    10、B
    【解析】
    分析:根据位似变换的性质计算即可.
    详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
    则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),
    故选B.
    点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
    11、C
    【解析】
    连接 D为弧AB的中点,根据弧,弦的关系可知,AD=BD,根据圆周角定理可得:在BC上截取,连接DF,则≌,根据全等三角形的性质可得: 即 根据等腰三角形的性质可得: 设 则
    即可求出的值.
    【详解】
    如图:

    连接
    D为弧AB的中点,根据弧,弦的关系可知,AD=BD,
    根据圆周角定理可得:
    在BC上截取,连接DF,

    则≌,




    根据等腰三角形的性质可得:
    设 则


    故选C.
    【点睛】
    考查弧,弦之间的关系,全等三角形的判定与性质,等腰三角形的性质,锐角三角函数等,综合性比较强,关键是构造全等三角形.
    12、C
    【解析】
    根据反比例函数与一次函数在同一坐标系内的图象可直接解答.
    【详解】
    观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
    由图象可得:-2<x<0或x>1,
    故选C.
    【点睛】
    本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1
    【解析】
    ∵点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,
    ∴由中点公式得:c=,
    ∴a+b=2c,
    ∴a+b-2c=1.
    故答案为1.
    14、或
    【解析】
    过点A作AG⊥BC,垂足为G,根据等腰直角三角形的性质可得AG=BG=CG=6,设BD=x,则DF=BD=x,EF=7-x,然后利用勾股定理可得到关于x的方程,从而求得DG的长,继而可求得AD的长.
    【详解】
    如图所示,过点A作AG⊥BC,垂足为G,
    ∵AB=AC=6,∠BAC=90°,
    ∴BC==12,
    ∵AB=AC,AG⊥BC,
    ∴AG=BG=CG=6,
    设BD=x,则EC=12-DE-BD=12-5-x=7-x,
    由翻折的性质可知:∠DFA=∠B=∠C=∠AFE=45°,DB=DF,EF=FC,
    ∴DF=x,EF=7-x,
    在Rt△DEF中,DE2=DF2+EF2,即25=x2+(7-x)2,
    解得:x=3或x=4,
    当BD=3时,DG=3,AD=,
    当BD=4时,DG=2,AD=,
    ∴AD的长为或,
    故答案为:或.

    【点睛】
    本题考查了翻折的性质、勾股定理的应用、等腰直角三角形的性质,正确添加辅助线,灵活运用勾股定理是解题的关键.
    15、
    【解析】
    若一元二次方程有实根,则根的判别式△=b2-4ac≥0,且k-1≠0,建立关于k的不等式组,求出k的取值范围.
    【详解】
    解:∵方程有两个实数根,
    ∴△=b2-4ac=(-2)2-4×2×(k-1)=44-8k≥0,且k-1≠0,
    解得:k≤且k≠1,
    故答案为k≤且k≠1.
    【点睛】
    此题考查根的判别式问题,总结:一元二次方程根的情况与判别式△的关系:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (3)△<0⇔方程没有实数根.
    16、120
    【解析】
    如图,

    ∵a∥b,∠2=80°,
    ∴∠4=∠2=80°(两直线平行,同位角相等)
    ∴∠3=∠1+∠4=40°+80°=120°.
    故答案为120°.
    17、m>1
    【解析】
    ∵反比例函数的图象在其每个象限内,y随x的增大而减小,
    ∴>0,
    解得:m>1,
    故答案为m>1.
    18、3或1.
    【解析】
    解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;
    ②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.
    综上所述:∴m的值为3或1.
    故答案为3或1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、小军的证明:见解析;小俊的证明:见解析;[变式探究]见解析;[结论运用]PG+PH的值为1;[迁移拓展](6+2)dm
    【解析】
    小军的证明:连接AP,利用面积法即可证得;
    小俊的证明:过点P作PG⊥CF,先证明四边形PDFG为矩形,再证明△PGC≌△CEP,即可得到答案;
    [变式探究]小军的证明思路:连接AP,根据S△ABC=S△ABP﹣S△ACP,即可得到答案;
    小俊的证明思路:过点C,作CG⊥DP,先证明四边形CFDG是矩形,再证明△CGP≌△CEP即可得到答案;
    [结论运用] 过点E作EQ⊥BC,先根据矩形的性质求出BF,根据翻折及勾股定理求出DC,证得四边形EQCD是矩形,得出BE=BF即可得到答案;
    [迁移拓展]延长AD,BC交于点F,作BH⊥AF,证明△ADE∽△BCE得到FA=FB,设DH=x,利用勾股定理求出x得到BH=6,再根据∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点即可得到答案.
    【详解】
    小军的证明:
    连接AP,如图②

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP+S△ACP,
    ∴AB×CF=AB×PD+AC×PE,
    ∵AB=AC,
    ∴CF=PD+PE.
    小俊的证明:
    过点P作PG⊥CF,如图2,
    ∵PD⊥AB,CF⊥AB,PG⊥FC,
    ∴∠CFD=∠FDG=∠FGP=90°,
    ∴四边形PDFG为矩形,
    ∴DP=FG,∠DPG=90°,
    ∴∠CGP=90°,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠PGC=∠CEP,
    ∵∠BDP=∠DPG=90°,
    ∴PG∥AB,
    ∴∠GPC=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∴∠GPC=∠ECP,
    在△PGC和△CEP中

    ∴△PGC≌△CEP,
    ∴CG=PE,
    ∴CF=CG+FG=PE+PD;
    [变式探究]
    小军的证明思路:连接AP,如图③,

    ∵PD⊥AB,PE⊥AC,CF⊥AB,
    ∴S△ABC=S△ABP﹣S△ACP,
    ∴AB×CF=AB×PD﹣AC×PE,
    ∵AB=AC,
    ∴CF=PD﹣PE;
    小俊的证明思路:
    过点C,作CG⊥DP,如图③,
    ∵PD⊥AB,CF⊥AB,CG⊥DP,
    ∴∠CFD=∠FDG=∠DGC=90°,
    ∴CF=GD,∠DGC=90°,四边形CFDG是矩形,
    ∵PE⊥AC,
    ∴∠CEP=90°,
    ∴∠CGP=∠CEP,
    ∵CG⊥DP,AB⊥DP,
    ∴∠CGP=∠BDP=90°,
    ∴CG∥AB,
    ∴∠GCP=∠B,
    ∵AB=AC,
    ∴∠B=∠ACB,
    ∵∠ACB=∠PCE,
    ∴∠GCP=∠ECP,
    在△CGP和△CEP中,

    ∴△CGP≌△CEP,
    ∴PG=PE,
    ∴CF=DG=DP﹣PG=DP﹣PE.
    [结论运用]
    如图④

    过点E作EQ⊥BC,
    ∵四边形ABCD是矩形,
    ∴AD=BC,∠C=∠ADC=90°,
    ∵AD=8,CF=3,
    ∴BF=BC﹣CF=AD﹣CF=5,
    由折叠得DF=BF,∠BEF=∠DEF,
    ∴DF=5,
    ∵∠C=90°,
    ∴DC==1,
    ∵EQ⊥BC,∠C=∠ADC=90°,
    ∴∠EQC=90°=∠C=∠ADC,
    ∴四边形EQCD是矩形,
    ∴EQ=DC=1,
    ∵AD∥BC,
    ∴∠DEF=∠EFB,
    ∵∠BEF=∠DEF,
    ∴∠BEF=∠EFB,
    ∴BE=BF,
    由问题情景中的结论可得:PG+PH=EQ,
    ∴PG+PH=1.
    ∴PG+PH的值为1.
    [迁移拓展]
    延长AD,BC交于点F,作BH⊥AF,如图⑤,

    ∵AD×CE=DE×BC,
    ∴,
    ∵ED⊥AD,EC⊥CB,
    ∴∠ADE=∠BCE=90°,
    ∴△ADE∽△BCE,
    ∴∠A=∠CBE,
    ∴FA=FB,
    由问题情景中的结论可得:ED+EC=BH,
    设DH=x,
    ∴AH=AD+DH=3+x,
    ∵BH⊥AF,
    ∴∠BHA=90°,
    ∴BH2=BD2﹣DH2=AB2﹣AH2,
    ∵AB=2,AD=3,BD=,
    ∴()2﹣x2=(2)2﹣(3+x)2,
    ∴x=1,
    ∴BH2=BD2﹣DH2=37﹣1=36,
    ∴BH=6,
    ∴ED+EC=6,
    ∵∠ADE=∠BCE=90°,且M,N分别为AE,BE的中点,
    ∴DM=EM=AE,CN=EN=BE,
    ∴△DEM与△CEN的周长之和
    =DE+DM+EM+CN+EN+EC
    =DE+AE+BE+EC
    =DE+AB+EC
    =DE+EC+AB
    =6+2,
    ∴△DEM与△CEN的周长之和(6+2)dm.
    【点睛】
    此题是一道综合题,考查三角形全等的判定及性质,勾股定理,矩形的性质定理,三角形的相似的判定及性质定理,翻折的性质,根据题中小军和小俊的思路进行证明,故正确理解题意由此进行后面的证明是解题的关键.
    20、周瑜去世的年龄为16岁.
    【解析】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.
    【详解】
    设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;
    10(x﹣1)+x=x2,
    解得:x1=5,x2=6
    当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
    当x=6时,周瑜年龄为16岁,完全符合题意.
    答:周瑜去世的年龄为16岁.
    【点睛】
    本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.
    21、(1)5;(2)36%;(3).
    【解析】
    试题分析:(1)根据:数据总数-已知的小组频数=所求的小组频数,进行求解,然后根据所求数据补全条形图即可;
    (2)根据:小组频数= ,进行求解即可;
    (3)利用列举法求概率即可.
    试题解析:
    (1)E类:50-2-3-22-18=5(人),故答案为:5;
    补图如下:

    (2)D类:1850×100%=36%,故答案为:36%;
    (3)设这5人为
    有以下10种情况:
    其中,两人都在 的概率是: .
    22、 (1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
    【解析】
    (1)直接利用位似图形的性质得出对应点位置进而得出答案;
    (2)利用(1)中所画图形进而得出答案.
    【详解】
    (1)如图所示:△OA1B1,△OA2B2,即为所求;

    (2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).
    【点睛】
    此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.
    23、(1);(1).
    【解析】
    (1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:,求出即可.
    【详解】
    解:(1)∵在矩形ABCD中,AB=1DA,DA=1,
    ∴AB=AE=4,
    ∴DE= ,
    ∴EC=CD-DE=4-1;
    (1)∵sin∠DEA= ,
    ∴∠DEA=30°,
    ∴∠EAB=30°,
    ∴图中阴影部分的面积为:
    S扇形FAB-S△DAE-S扇形EAB=

    【点睛】
    此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.
    24、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
    【解析】
    (1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
    根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
    (2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
    (3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    通过证明△BNP≌△PMQ求解即可.
    【详解】
    (1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
    设原抛物线的顶点为D,
    ∵点B(3,0),点C(0,3).
    易得BC的解析式为:y=﹣x+3,
    当x=1时,y=2,
    如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
    h=3﹣1=2,
    当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
    h=3+1=4,
    ∴h的取值范围是2≤h≤4;
    (3)设P(m,﹣m2+2m+3),
    如图2,△PQB是等腰直角三角形,且PQ=PB,
    过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    易得△BNP≌△PMQ,
    ∴BN=PM,
    即﹣m2+2m+3=m+3,
    解得:m1=0(图3)或m2=1,
    ∴P(1,4)或(0,3).
    【点睛】
    本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
    25、(1)111,51;(2)11.
    【解析】
    (1)设乙工程队每天能完成绿化的面积是x(m2),根据在独立完成面积为411m2区域的绿化时,甲队比乙队少用4天,列出方程,求解即可;
    (2)设应安排甲队工作y天,根据这次的绿化总费用不超过8万元,列出不等式,求解即可.
    【详解】
    解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:

    解得:x=51,
    经检验x=51是原方程的解,
    则甲工程队每天能完成绿化的面积是51×2=111(m2),
    答:甲、乙两工程队每天能完成绿化的面积分别是111m2、51m2;
    (2)设应安排甲队工作y天,根据题意得:
    1.4y+×1.25≤8,
    解得:y≥11,
    答:至少应安排甲队工作11天.
    26、 (1)证明见解析;(2)
    【解析】
    试题分析:(1)首先连接OD,CD,由以BC为直径的⊙O,可得CD⊥AB,又由等腰三角形ABC的底角为30°,可得AD=BD,即可证得OD∥AC,继而可证得结论;
    (2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得△BOD,△ODE,△ADE以及△ABC的面积,继而求得答案.
    试题解析:(1)证明:连接OD,CD,

    ∵BC为⊙O直径,
    ∴∠BDC=90°,
    即CD⊥AB,
    ∵△ABC是等腰三角形,
    ∴AD=BD,
    ∵OB=OC,
    ∴OD是△ABC的中位线,
    ∴OD∥AC,
    ∵DE⊥AC,
    ∴OD⊥DE,
    ∵D点在⊙O上,
    ∴DE为⊙O的切线;
    (2)解:∵∠A=∠B=30°,BC=4,
    ∴CD=BC=2,BD=BC•cos30°=2,
    ∴AD=BD=2,AB=2BD=4,
    ∴S△ABC=AB•CD=×4×2=4,
    ∵DE⊥AC,
    ∴DE=AD=×2=,
    AE=AD•cos30°=3,
    ∴S△ODE=OD•DE=×2×=,
    S△ADE=AE•DE=××3=,
    ∵S△BOD=S△BCD=×S△ABC=×4=,
    ∴S△OEC=S△ABC-S△BOD-S△ODE-S△ADE=4---=.
    27、(1)详见解析;(2)2+2;(3)S△BDQx+.
    【解析】
    (1)根据要求利用全等三角形的判定和性质画出图形即可.
    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
    【详解】
    解:(1)如图1,作一边上的中线可分割成2个全等三角形,
    如图2,连接外心和各顶点的线段可分割成3个全等三角形,
    如图3,连接各边的中点可分割成4个全等三角形,

    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.

    ∵△ABC是等边三角形,O是外心,
    ∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
    ∴OE=OF,
    ∵∠OEB=∠OFB=90°,
    ∴∠EOF+∠EBF=180°,
    ∴∠EOF=∠NOM=120°,
    ∴∠EOM=∠FON,
    ∴△OEM≌△OFN(ASA),
    ∴EM=FN,ON=OM,S△EOM=S△NOF,
    ∴S四边形BMON=S四边形BEOF=定值,
    ∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
    ∴Rt△OBE≌Rt△OBF(HL),
    ∴BE=BF,
    ∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
    ∴欲求最小值,只要求出l的最小值,
    ∵l=BM+BN+ON+OM=定值+ON+OM,
    欲求最小值,只要求出ON+OM的最小值,
    ∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
    此时定值最小,s=×2×=,l=2+2++=4+,
    ∴的最小值==2+2.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.

    ∵△ABC是等边三角形,BD=DC,
    ∴AD平分∠BAC,
    ∵DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∵∠DEA=∠DEQ=∠AFD=90°,
    ∴∠EAF+∠EDF=180°,
    ∵∠EAF=60°,
    ∴∠EDF=∠PDQ=120°,
    ∴∠PDF=∠QDE,
    ∴△PDF≌△QDE(ASA),
    ∴PF=EQ,
    在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
    ∴CF=CD=1,DF=,
    同法可得:BE=1,DE=DF=,
    ∵AF=AC﹣CF=4﹣1=3,PA=x,
    ∴PF=EQ=3+x,
    ∴BQ=EQ﹣BE=2+x,
    ∴S△BDQ=•BQ•DE=×(2+x)×=x+.
    【点睛】
    本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。

    相关试卷

    重庆綦江南川巴县2022年数学九年级第一学期期末达标检测试题含解析:

    这是一份重庆綦江南川巴县2022年数学九年级第一学期期末达标检测试题含解析,共23页。

    重庆綦江南川巴县2022-2023学年数学九上期末质量检测模拟试题含解析:

    这是一份重庆綦江南川巴县2022-2023学年数学九上期末质量检测模拟试题含解析,共23页。试卷主要包含了以下事件属于随机事件的是等内容,欢迎下载使用。

    2023-2024学年重庆綦江南川巴县数学八上期末联考模拟试题含答案:

    这是一份2023-2024学年重庆綦江南川巴县数学八上期末联考模拟试题含答案,共7页。试卷主要包含了在式子,,,中,分式的个数是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map