浙江省温州市翔升2022年中考数学模拟精编试卷含解析
展开
这是一份浙江省温州市翔升2022年中考数学模拟精编试卷含解析,共19页。试卷主要包含了下列图形不是正方体展开图的是,在平面直角坐标系内,点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次 B.能中奖两次
C.至少能中奖一次 D.中奖次数不能确定
2.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )
A.20 B.15 C.10 D.5
3.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )
A. B.
C. D.
4.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠CAC′为( )
A.30° B.35° C.40° D.50°
5.如图,直线AB∥CD,则下列结论正确的是( )
A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
6.在实数0,-π,,-4中,最小的数是( )
A.0 B.-π C. D.-4
7.下列图形不是正方体展开图的是( )
A. B.
C. D.
8.在平面直角坐标系内,点P(a,a+3)的位置一定不在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.某学校举行一场知识竞赛活动,竞赛共有4小题,每小题5分,答对给5分,答错或不答给0分,在该学校随机抽取若干同学参加比赛,成绩被制成不完整的统计表如下.
成绩
人数(频数)
百分比(频率)
0
5
0.2
10
5
15
0.4
20
5
0.1
根据表中已有的信息,下列结论正确的是( )
A.共有40名同学参加知识竞赛
B.抽到的同学参加知识竞赛的平均成绩为10分
C.已知该校共有800名学生,若都参加竞赛,得0分的估计有100人
D.抽到同学参加知识竞赛成绩的中位数为15分
10.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为( )
A.﹣1 B.0 C.1 D.3
二、填空题(共7小题,每小题3分,满分21分)
11.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为 米.
12.把多项式x3﹣25x分解因式的结果是_____
13.因式分解a3-6a2+9a=_____.
14. “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.
15.把多项式9x3﹣x分解因式的结果是_____.
16.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).
17.将函数y=3x+1的图象沿y轴向下平移2个单位长度,所得直线的函数表达式为_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
(1)求抛物线的解析式;
(2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
19.(5分)每年4月23日是世界读书日,某校为了解学生课外阅读情况,随机抽取20名学生,对每人每周用于课外阅读的平均时间(单位:min)进行调查,过程如下:
收集数据:
30
60
81
50
40
110
130
146
90
100
60
81
120
140
70
81
10
20
100
81
整理数据:
课外阅读平均时间x(min)
0≤x<40
40≤x<80
80≤x<120
120≤x<160
等级
D
C
B
A
人数
3
a
8
b
分析数据:
平均数
中位数
众数
80
m
n
请根据以上提供的信息,解答下列问题:
(1)填空:a= ,b= ;m= ,n= ;
(2)已知该校学生500人,若每人每周用于课外阅读的平均时间不少于80min为达标,请估计达标的学生数;
(3)设阅读一本课外书的平均时间为260min,请选择适当的统计量,估计该校学生每人一年(按52周计)平均阅读多少本课外书?
20.(8分)如图,圆O是的外接圆,AE平分交圆O于点E,交BC于点D,过点E作直线.
(1)判断直线l与圆O的关系,并说明理由;
(2)若的平分线BF交AD于点F,求证:;
(3)在(2)的条件下,若,,求AF的长.
21.(10分)先化简代数式:,再代入一个你喜欢的数求值.
22.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC于点D,E,DG⊥AC于点G,交AB的延长线于点F.
(1)求证:直线FG是⊙O的切线;
(2)若AC=10,cosA=,求CG的长.
23.(12分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.
24.(14分)(1)观察猜想
如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;
(2)问题解决
如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
(3)拓展延伸
如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【详解】
解:根据随机事件的定义判定,中奖次数不能确定
故选D.
【点睛】
解答此题要明确概率和事件的关系:
,为不可能事件;
为必然事件;
为随机事件.
2、B
【解析】
∵ABCD是菱形,∠BCD=120°,∴∠B=60°,BA=BC.
∴△ABC是等边三角形.∴△ABC的周长=3AB=1.故选B
3、B
【解析】
抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.
【详解】
解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.
【点睛】
本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.
4、A
【解析】
根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解
【详解】
∵CC′∥AB,∠CAB=75°,
∴∠C′CA=∠CAB=75°,
又∵C、C′为对应点,点A为旋转中心,
∴AC=AC′,即△ACC′为等腰三角形,
∴∠CAC′=180°﹣2∠C′CA=30°.
故选A.
【点睛】
此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键
5、D
【解析】
分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
详解:如图,∵AB∥CD,
∴∠3+∠5=180°,
又∵∠5=∠4,
∴∠3+∠4=180°,
故选D.
点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
6、D
【解析】
根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.
【详解】
∵正数大于0和一切负数,
∴只需比较-π和-1的大小,
∵|-π|<|-1|,
∴最小的数是-1.
故选D.
【点睛】
此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.
7、B
【解析】
由平面图形的折叠及正方体的展开图解题.
【详解】
A、C、D经过折叠均能围成正方体,B折叠后上边没有面,不能折成正方体.
故选B.
【点睛】
此题主要考查平面图形的折叠及正方体的展开图,熟练掌握,即可解题.
8、D
【解析】
判断出P的横纵坐标的符号,即可判断出点P所在的相应象限.
【详解】
当a为正数的时候,a+3一定为正数,所以点P可能在第一象限,一定不在第四象限, 当a为负数的时候,a+3可能为正数,也可能为负数,所以点P可能在第二象限,也可能在第三象限,
故选D.
【点睛】
本题考查了点的坐标的知识点,解题的关键是由a的取值判断出相应的象限.
9、B
【解析】
根据频数÷频率=总数可求出参加人数,根据分别求出5分、15分、0分的人数,即可求出平均分,根据0分的频率即可求出800人中0分的人数,根据中位数的定义求出中位数,对选项进行判断即可.
【详解】
∵5÷0.1=50(名),有50名同学参加知识竞赛,故选项A错误;
∵成绩5分、15分、0分的同学分别有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)
∴抽到的同学参加知识竞赛的平均成绩为:=10,故选项B正确;
∵0分同学10人,其频率为0.2,
∴800名学生,得0分的估计有800×0.2=160(人),故选项C错误;
∵第25、26名同学的成绩为10分、15分,
∴抽到同学参加知识竞赛成绩的中位数为12.5分,故选项D错误.
故选:B.
【点睛】
本题考查利用频率估算概率,平均数及中位数的定义,熟练掌握相关知识是解题关键.
10、D
【解析】
分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
详解:由题意得,
(-4)2-4(c+1)=0,
c=3.
故选D.
点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆
相关试卷
这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。
这是一份2023届浙江省温州市各校中考数学模拟精编试卷含解析,共16页。
这是一份浙江省温州市翔升2022年中考五模数学试题含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,直线与y轴交于点,分式有意义,则x的取值范围是,下列说法正确的是等内容,欢迎下载使用。