浙江省杭州市临安区锦城第二初级中学2022年中考数学全真模拟试题含解析
展开
这是一份浙江省杭州市临安区锦城第二初级中学2022年中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下面的几何体中,主视图为圆的是,二次函数y=3等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为( )
A.34° B.56° C.66° D.54°
2.下列四个几何体中,左视图为圆的是( )
A. B. C. D.
3.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
4.下面的几何体中,主视图为圆的是( )
A. B. C. D.
5.如图图形中,可以看作中心对称图形的是( )
A. B. C. D.
6.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
7.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
A.-6 B.-5 C.-6或-5 D.6或5
8.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是( )
A.△BAC∽△BDA B.△BFA∽△BEC
C.△BDF∽△BEC D.△BDF∽△BAE
9.已知反比例函数y=的图象位于第一、第三象限,则k的取值范围是( )
A.k>8 B.k≥8 C.k≤8 D.k<8
10.二次函数y=3(x﹣1)2+2,下列说法正确的是( )
A.图象的开口向下
B.图象的顶点坐标是(1,2)
C.当x>1时,y随x的增大而减小
D.图象与y轴的交点坐标为(0,2)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.已知是一元二次方程的一个根,则方程的另一个根是________.
12.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .
13.__.
14.已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是_____.
15.若关于的一元二次方程(m-1)x2-4x+1=0有两个不相等的实数根,则m的取值范围为_____________.
16.如图①,四边形ABCD中,AB∥CD,∠ADC=90°,P从A点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为S,S关于t的函数图象如图②所示,当P运动到BC中点时,△PAD的面积为______.
三、解答题(共8题,共72分)
17.(8分)(1)化简:
(2)解不等式组.
18.(8分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
19.(8分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.
20.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
(1)求证:DC=DE;
(2)若AE=1,,求⊙O的半径.
21.(8分)P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
(1)⊙O的半径为6,OP=1.
①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
(2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
(3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
22.(10分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.
对冬奥会了解程度的统计表
对冬奥会的了解程度
百分比
A非常了解
10%
B比较了解
15%
C基本了解
35%
D不了解
n%
(1)n= ;
(2)扇形统计图中,D部分扇形所对应的圆心角是 ;
(3)请补全条形统计图;
(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.
23.(12分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
品种
A
B
原来的运费
45
25
现在的运费
30
20
(1)求每次运输的农产品中A,B产品各有多少件;
(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
24.已知关于 x 的一元二次方程 x2﹣2(k﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题分析:∵AB∥CD,
∴∠D=∠1=34°,
∵DE⊥CE,
∴∠DEC=90°,
∴∠DCE=180°﹣90°﹣34°=56°.
故选B.
考点:平行线的性质.
2、A
【解析】
根据三视图的法则可得出答案.
【详解】
解:左视图为从左往右看得到的视图,
A.球的左视图是圆,
B.圆柱的左视图是长方形,
C.圆锥的左视图是等腰三角形,
D.圆台的左视图是等腰梯形,
故符合题意的选项是A.
【点睛】
错因分析 较容易题.失分原因是不会判断常见几何体的三视图.
3、B
【解析】
先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.
【详解】
∵四边形ABCD为平行四边形,
∴AD∥BC,AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;
B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;
C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;
D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,
故选B.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.
4、C
【解析】
试题解析:A、的主视图是矩形,故A不符合题意;
B、的主视图是正方形,故B不符合题意;
C、的主视图是圆,故C符合题意;
D、的主视图是三角形,故D不符合题意;
故选C.
考点:简单几何体的三视图.
5、D
【解析】
根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形,关键掌握中心对称图形定义.
6、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
7、A
【解析】
试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
∴x1+x2=2,x1∙x2=-1
∴=.
故选A.
8、C
【解析】
根据相似三角形的判定,采用排除法,逐项分析判断.
【详解】
∵∠BAD=∠C,
∠B=∠B,
∴△BAC∽△BDA.故A正确.
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴△BFA∽△BEC.故B正确.
∴∠BFA=∠BEC,
∴∠BFD=∠BEA,
∴△BDF∽△BAE.故D正确.
而不能证明△BDF∽△BEC,故C错误.
故选C.
【点睛】
本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
9、A
【解析】
本题考查反比例函数的图象和性质,由k-8>0即可解得答案.
【详解】
∵反比例函数y=的图象位于第一、第三象限,
∴k-8>0,
解得k>8,
故选A.
【点睛】
本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
10、B
【解析】
由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.
【详解】
解:A、因为a=3>0,所以开口向上,错误;
B、顶点坐标是(1,2),正确;
C、当x>1时,y随x增大而增大,错误;
D、图象与y轴的交点坐标为(0,5),错误;
故选:B.
【点睛】
考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.
【详解】
设方程的另一根为x1,
又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.
故答案为:
【点睛】
解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.
12、
【解析】
【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率.
【详解】袋子中有3个白球和2个红球,一共5个球,
所以从中任意摸出一个球是红球的概率为:,
故答案为.
【点睛】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.
13、.
【解析】
根据去括号法则和合并同类二次根式法则计算即可.
【详解】
解:原式
故答案为:
【点睛】
此题考查的是二次根式的加减运算,掌握去括号法则和合并同类二次根式法则是解决此题的关键.
14、1.1
【解析】
【分析】先判断出x,y中至少有一个是1,再用平均数求出x+y=11,即可得出结论.
【详解】∵一组数据4,x,1,y,7,9的众数为1,
∴x,y中至少有一个是1,
∵一组数据4,x,1,y,7,9的平均数为6,
∴(4+x+1+y+7+9)=6,
∴x+y=11,
∴x,y中一个是1,另一个是6,
∴这组数为4,1,1,6,7,9,
∴这组数据的中位数是×(1+6)=1.1,
故答案为:1.1.
【点睛】本题考查了众数、平均数、中位数等概念,熟练掌握众数、平均数、中位数的概念、判断出x,y中至少有一个是1是解本题的关键.
15、且
【解析】
试题解析: ∵一元二次方程有两个不相等的实数根,
∴m−1≠0且△=16−4(m−1)>0,解得m
相关试卷
这是一份2023年浙江省杭州市临安区锦城四中中考数学三模试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年浙江省杭州市临安区锦城第二初级中学数学九上期末复习检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,在单词prbability等内容,欢迎下载使用。
这是一份浙江省杭州市临安区锦城第二初级中学2022-2023学年数学七年级第二学期期末学业水平测试试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数中,正比例函数是,下列式子一定成立的是,五边形的内角和是等内容,欢迎下载使用。