搜索
    上传资料 赚现金
    英语朗读宝

    浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析

    浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析第1页
    浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析第2页
    浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析

    展开

    这是一份浙江省杭州市临安区锦城第二初级中学2022年中考数学最后一模试卷含解析,共18页。试卷主要包含了有一组数据,一、单选题等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
    A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
    2.下列关于事件发生可能性的表述,正确的是(  )
    A.事件:“在地面,向上抛石子后落在地上”,该事件是随机事件
    B.体育彩票的中奖率为10%,则买100张彩票必有10张中奖
    C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品
    D.掷两枚硬币,朝上的一面是一正面一反面的概率为
    3.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    4.抛物线y=mx2﹣8x﹣8和x轴有交点,则m的取值范围是(  )
    A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠0
    5.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是(  )

    A.0 B.1 C.2 D.3
    6.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为(  )
    A.6 B.8 C.14 D.16
    7.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为(  )

    A.800sinα米 B.800tanα米 C.米 D.米
    8.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是( )
    A.2 B.-2 C.4 D.-4
    9.一、单选题
    在反比例函数的图象中,阴影部分的面积不等于4的是( )
    A. B. C. D.
    10.设x1,x2是方程x2-2x-1=0的两个实数根,则的值是( )
    A.-6 B.-5 C.-6或-5 D.6或5
    二、填空题(共7小题,每小题3分,满分21分)
    11.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是   cm(结果保留根号).

    12.如图,AB∥CD,点E是CD上一点,∠AEC=40°,EF平分∠AED交AB于点F,则∠AFE=___度.

    13.分解因式:ab2﹣9a=_____.
    14.分解因式:a3b+2a2b2+ab3=_____.
    15.如图,直线a、b相交于点O,若∠1=30°,则∠2=___

    16.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .

    17.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.
    三、解答题(共7小题,满分69分)
    18.(10分)计算:2sin30°﹣|1﹣|+()﹣1
    19.(5分)解不等式组并写出它的整数解.
    20.(8分)如图,已知点A,B,C在半径为4的⊙O上,过点C作⊙O的切线交OA的延长线于点D.
    (Ⅰ)若∠ABC=29°,求∠D的大小;
    (Ⅱ)若∠D=30°,∠BAO=15°,作CE⊥AB于点E,求:
    ①BE的长;
    ②四边形ABCD的面积.

    21.(10分)先化简,再求值:,其中,.
    22.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
    (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
    (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
    23.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).
    (1)求抛物线的解析式;
    (2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;
    (3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.

    24.(14分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.求这条直线的函数关系式及点B的坐标.在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
    解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
    故选A.
    考点:二次函数图象与几何变换.
    2、C
    【解析】
    根据随机事件,必然事件的定义以及概率的意义对各个小题进行判断即可.
    【详解】
    解:A. 事件:“在地面,向上抛石子后落在地上”,该事件是必然事件,故错误.
    B. 体育彩票的中奖率为10%,则买100张彩票可能有10张中奖,故错误.
    C. 在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确.
    D. 掷两枚硬币,朝上的一面是一正面一反面的概率为,故错误.
    故选:C.
    【点睛】
    考查必然事件,随机事件的定义以及概率的意义,概率=所求情况数与总情况数之比.
    3、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    4、C
    【解析】
    根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.
    【详解】
    解:∵抛物线和轴有交点,
    ,
    解得:且.
    故选.
    【点睛】
    本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键.
    5、D
    【解析】
    根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
    【详解】
    ∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
    ∴∠A=∠EBA,∠CBE=∠EBA,
    ∴∠A=∠CBE=∠EBA,
    ∵∠C=90°,
    ∴∠A+∠CBE+∠EBA=90°,
    ∴∠A=∠CBE=∠EBA=30°,故①选项正确;
    ∵∠A=∠EBA,∠EDB=90°,
    ∴AD=BD,故②选项正确;
    ∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
    ∴EC=ED(角平分线上的点到角的两边距离相等),
    ∴点E到AB的距离等于CE的长,故③选项正确,
    故正确的有3个.
    故选D.
    【点睛】
    此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
    6、C
    【解析】
    根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
    【详解】
    ∵一元二次方程x2-2x-5=0的两根是x1、x2,
    ∴x1+x2=2,x1•x2=-5,
    ∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
    故选C.
    【点睛】
    考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
    7、D
    【解析】
    【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题.
    【详解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,
    ∴tanα=,
    ∴AB=,
    故选D.
    【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.
    8、C
    【解析】
    对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.
    即16-4k=0,解得:k=4.
    考点:一元二次方程根的判别式
    9、B
    【解析】
    根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.
    【详解】
    解:A、图形面积为|k|=1;
    B、阴影是梯形,面积为6;
    C、D面积均为两个三角形面积之和,为2×(|k|)=1.
    故选B.
    【点睛】
    主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.
    10、A
    【解析】
    试题解析:∵x1,x2是方程x2-2x-1=0的两个实数根,
    ∴x1+x2=2,x1∙x2=-1
    ∴=.
    故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、24+24
    【解析】
    仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
    【详解】
    解:观察图形得MH=GN=AD=12,HG=AC,
    AD=DC=12,
    AC=12,
    HG=6.
    梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
    故答案为24+24.
    【点睛】
    此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
    12、70°.
    【解析】
    由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.
    【详解】
    ∵∠AEC=40°,
    ∴∠AED=180°﹣∠AEC=140°,
    ∵EF平分∠AED,
    ∴,
    又∵AB∥CD,
    ∴∠AFE=∠DEF=70°.
    故答案为:70
    【点睛】
    本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.
    13、a(b+3)(b﹣3).
    【解析】
    根据提公因式,平方差公式,可得答案.
    【详解】
    解:原式=a(b2﹣9)
    =a(b+3)(b﹣3),
    故答案为:a(b+3)(b﹣3).
    【点睛】
    本题考查了因式分解,一提,二套,三检查,分解要彻底.
    14、ab(a+b)1.
    【解析】
    a3b+1a1b1+ab3=ab(a1+1ab+b1)=ab(a+b)1.
    故答案为ab(a+b)1.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.
    15、30°
    【解析】
    因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.
    解:∵∠1+∠2=180°,
    又∠1=30°,
    ∴∠2=150°.
    16、
    【解析】
    在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.
    【详解】

    在直角△ABD中,BD=1,AB=2,
    则AD===,
    则sinA= ==.
    故答案是:.
    17、x<1
    【解析】
    根据一次函数的性质得出不等式解答即可.
    【详解】
    因为一次函数y=﹣2(x+1)+4的值是正数,
    可得:﹣2(x+1)+4>0,
    解得:x<1,
    故答案为x<1.
    【点睛】
    本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.

    三、解答题(共7小题,满分69分)
    18、4﹣
    【解析】
    原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.
    【详解】
    原式=2×﹣( ﹣1)+2
    =1﹣+1+2
    =4﹣.
    【点睛】
    本题考查了实数的运算,熟练掌握运算法则是解本题的关键.
    19、不等式组的解集是5<x≤1,整数解是6,1
    【解析】
    先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
    【详解】

    ∵解①得:x>5,
    解不等式②得:x≤1,
    ∴不等式组的解集是5<x≤1,
    ∴不等式组的整数解是6,1.
    【点睛】
    本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
    20、(1)∠D=32°;(2)①BE=;②
    【解析】
    (Ⅰ)连接OC, CD为切线,根据切线的性质可得∠OCD=90°,根据圆周角定理可得∠AOC=2∠ABC=29°×2=58°,根据直角三角形的性质可得∠D的大小.
    (Ⅱ)①根据∠D=30°,得到∠DOC=60°,根据∠BAO=15°,可以得出∠AOB=150°,进而证明△OBC为等腰直角三角形,根据等腰直角三角形的性质得出
    根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的长;
    ②根据四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB进行计算即可.
    【详解】
    (Ⅰ)连接OC,
    ∵CD为切线,
    ∴OC⊥CD,
    ∴∠OCD=90°,
    ∵∠AOC=2∠ABC=29°×2=58°,
    ∴∠D=90°﹣58°=32°;
    (Ⅱ)①连接OB,
    在Rt△OCD中,∵∠D=30°,
    ∴∠DOC=60°,
    ∵∠BAO=15°,
    ∴∠OBA=15°,
    ∴∠AOB=150°,
    ∴∠OBC=150°﹣60°=90°,
    ∴△OBC为等腰直角三角形,


    在Rt△CBE中,

    ②作BH⊥OA于H,如图,
    ∵∠BOH=180°﹣∠AOB=30°,

    ∴四边形ABCD的面积=S△OBC+S△OCD﹣S△OAB


    【点睛】
    考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中.
    21、1
    【解析】
    分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.
    详解:原式



    当x=-1、y=2时,
    原式=-(-1)2+2×22
    =-1+8
    =1.
    点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    22、解:(1)10,50;
    (2)解法一(树状图):

    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)= ;
    解法二(列表法):

    (以下过程同“解法一”)
    【解析】
    试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)10,50;
    (2)解法一(树状图):
    ,
    从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    解法二(列表法):


    0

    10

    20

    30

    0

    ﹣﹣

    10

    20

    30

    10

    10

    ﹣﹣

    30

    40

    20

    20

    30

    ﹣﹣

    50

    30

    30

    40

    50

    ﹣﹣

    从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,
    因此P(不低于30元)==;
    考点:列表法与树状图法.
    【详解】
    请在此输入详解!
    23、(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)
    【解析】
    (1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);
    根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b的值,可得抛物线L的表达式;
    (2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC内(包括△OBC的边界)时h的取值范围.
    (3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    通过证明△BNP≌△PMQ求解即可.
    【详解】
    (1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,
    设原抛物线的顶点为D,
    ∵点B(3,0),点C(0,3).
    易得BC的解析式为:y=﹣x+3,
    当x=1时,y=2,
    如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,
    h=3﹣1=2,
    当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,
    h=3+1=4,
    ∴h的取值范围是2≤h≤4;
    (3)设P(m,﹣m2+2m+3),
    如图2,△PQB是等腰直角三角形,且PQ=PB,
    过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,
    易得△BNP≌△PMQ,
    ∴BN=PM,
    即﹣m2+2m+3=m+3,
    解得:m1=0(图3)或m2=1,
    ∴P(1,4)或(0,3).
    【点睛】
    本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.
    24、(1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(﹣,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1.
    【解析】
    (1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;
    (2)分若∠BAC=90°,则AB2+AC2=BC2;若∠ACB=90°,则AB2=AC2+BC2;若∠ABC=90°,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;
    (3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=﹣a2+3a+9,确定二次函数的最值即可.
    【详解】
    (1)∵点A是直线与抛物线的交点,且横坐标为-2,
    ,A点的坐标为(-2,1),
    设直线的函数关系式为y=kx+b,
    将(0,4),(-2,1)代入得
    解得
    ∴y=x+4
    ∵直线与抛物线相交,

    解得:x=-2或x=8,
    当x=8时,y=16,
    ∴点B的坐标为(8,16);
    (2)存在.
    ∵由A(-2,1),B(8,16)可求得AB2==325
    .设点C(m,0),
    同理可得AC2=(m+2)2+12=m2+4m+5,
    BC2=(m-8)2+162=m2-16m+320,
    ①若∠BAC=90°,则AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;
    ②若∠ACB=90°,则AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;
    ③若∠ABC=90°,则AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,
    ∴点C的坐标为(-,0),(0,0),(6,0),(32,0) 
    (3)设M(a,a2),
    则MN=,
    又∵点P与点M纵坐标相同,
    ∴x+4=a2,
    ∴x= ,
    ∴点P的横坐标为,
    ∴MP=a-,
    ∴MN+3PM=a2+1+3(a-)=-a2+3a+9=- (a-6)2+1,
    ∵-2≤6≤8,
    ∴当a=6时,取最大值1,
    ∴当M的横坐标为6时,MN+3PM的长度的最大值是1

    相关试卷

    2023年浙江省杭州市临安区锦城四中中考数学三模试卷(含解析):

    这是一份2023年浙江省杭州市临安区锦城四中中考数学三模试卷(含解析),共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年浙江省杭州市临安区锦城第二初级中学数学九上期末复习检测试题含答案:

    这是一份2023-2024学年浙江省杭州市临安区锦城第二初级中学数学九上期末复习检测试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,在单词prbability等内容,欢迎下载使用。

    浙江省杭州市临安区锦城第二初级中学2022-2023学年数学七年级第二学期期末学业水平测试试题含答案:

    这是一份浙江省杭州市临安区锦城第二初级中学2022-2023学年数学七年级第二学期期末学业水平测试试题含答案,共6页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数中,正比例函数是,下列式子一定成立的是,五边形的内角和是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map