- 专题01一元二次方程(16个考点)-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版) 试卷 3 次下载
- 专题02对称图形——圆(23个考点)-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版) 试卷 4 次下载
- 专题04二次函数(12个考点)【知识梳理+解题方法+专题过关】-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版) 试卷 6 次下载
- 九年级上学期期中【常考60题考点专练】(九上全部内容)-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版) 试卷 6 次下载
- 九年级上学期期中【夯实基础60题考点专练】-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版) 试卷 6 次下载
专题03数据分析与概率(8个考点)-2022-2023学年九年级数学上学期期中期末考点大串讲(苏科版)
展开专题03数据分析与概率(8个考点)
【知识梳理+解题方法】
一.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
二.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwn/w1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
三.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
四.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
五.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
六.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
七.可能性的大小
随机事件发生的可能性(概率)的计算方法:
(1)理论计算又分为如下两种情况:
第一种:只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.
(2)实验估算又分为如下两种情况:
第一种:利用实验的方法进行概率估算.要知道当实验次数非常大时,实验频率可作为事件发生的概率的估计值,即大量实验频率稳定于理论概率.
第二种:利用模拟实验的方法进行概率估算.如,利用计算器产生随机数来模拟实验.
八.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
九.几何概率
所谓几何概型的概率问题,是指具有下列特征的一些随机现象的概率问题:设在空间上有一区域G,又区域g包含在区域G内(如图),而区域G与g都是可以度量的(可求面积),现随机地向G内投掷一点M,假设点M必落在G中,且点M落在区域G的任何部分区域g内的概率只与g的度量(长度、面积、体积等)成正比,而与g的位置和形状无关.具有这种性质的随机试验(掷点),称为几何概型.关于几何概型的随机事件“向区域G中任意投掷一个点M,点M落在G内的部分区域g”的概率P定义为:g的度量与G的度量之比,即 P=g的测度G的测度
简单来说:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
【专题过关】
一.算术平均数(共5小题)
1.(2021秋•灌南县期末)一组数据40,37,x,64的平均数是53,则x的值是( )
A.67 B.69 C.71 D.72
2.(2021秋•埇桥区期末)在今年中小学全面落实“双减”政策后小丽同学某周每天的睡眠时间为(单位:小时):8,9,7,9,7,8,8.则小丽该周每天的平均睡眠时间是( )
A.7小时 B.7.5小时 C.8小时 D.9小时
3.(2021秋•建湖县期末)某快餐店某天销售3种盒饭的有关数据如图所示,则3种盒饭的价格平均数是 元.
4.(2021秋•兴化市月考)如果数据x1,x2,x3的平均数是5,那么数据x1+2,x2+2,x3+2的平均数为 .
5.(2022•张家港市一模)对于三个数a,b,c用M{a,b,c}表示a,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数.例如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.
(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;
(2)是否存在一个x的值,使得M{2x,2﹣x,3}=×min{﹣1,0,4x+1),若存在,请求出x的值;若不存在,请说明理由.
二.加权平均数(共2小题)
6.(2022•如皋市二模)小林参加学校举办的“五四最美少年”主题演讲比赛,他的演讲资料、语言表达、形象风度、综合印象得分分别为85分,70分,80分,80分.若学校将上面的四项依次按照40%,40%,10%,10%的占比计算总成绩(百分制),则小林的总成绩是( )
A.80分 B.79分 C.78分 D.77分
7.(2022•高新区二模)在一次中学生趣味数学竞赛中,参加比赛的10名学生的成绩如下表所示:
分数 | 80 | 85 | 90 | 95 |
人数 | 1 | 4 | 3 | 2 |
这10名学生所得分数的平均数是( )
A.86 B.88 C.90 D.92
三.中位数(共2小题)
8.(2022•宿豫区二模)已知一组数据:1、4、2、3、4,这组数据的中位数是( )
A.1 B.2 C.3 D.4
9.(2022•泗洪县三模)某市三月份连续7天的最高气温依次是:18,15,16,15,16,18.19(单位:℃),则这组数据的中位数是( )
A.19 B.18 C.17 D.16
四.众数(共6小题)
10.(2022•启东市二模)数据6,8,9中添加一个数据a后,发现这组新数据的中位数恰好也是众数,则a的值为( )
A.9 B.8 C.7 D.6
11.(2022•无锡)已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是( )
A.114,115 B.114,114 C.115,114 D.115,115
12.(2022•徐州)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.
根据图中信息,解决下列问题.
(1)这5枚古钱币,所标直径的平均数是 mm,所标厚度的众数是 mm,所标质量的中位数是 g;
(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:
名称 | 文星高照 | 状元及第 | 鹿鹤同春 | 顺风大吉 | 连中三元 |
总质量/g | 58.7 | 58.1 | 55.2 | 54.3 | 55.8 |
盒标质量 | 24.4 | 24.0 | 13.0 | 20.0 | 21.7 |
盒子质量 | 34.3 | 34.1 | 42.2 | 34.3 | 34.1 |
请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.
13.(2022•钟楼区校级模拟)2022年3月,新冠疫情突袭常州,社会各界众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大,口罩也成为人们防护防疫的必备武器.钟楼区某药店有2500枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:
(1)图①中m的值为 ;
(2)统计的这组数据的平均数为 ,众数为 ,中位数为 ;
(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为多少枚?
14.(2022•南通)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:
A,B两个县区的统计表
| 平均数 | 众数 | 中位数 |
A县区 | 3.85 | 3 | 3 |
B县区 | 3.85 | 4 | 2.5 |
(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为 名;
(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.
15.(2022•启东市二模)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解各年级学生体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:“我想随机抽取七年级男、女生各60人的成绩;”
小明:“我想随机抽取七、八九年级男生各40人的成绩.”
①根据如图所示的学校信息,请你简要评价小红、小明的抽样方案;
②如果你来抽取120名学生的测试成绩,请给出抽样方案.
(2)小明在与同伴交流后,完善了自己的抽样方案,并将随机抽取的测试成绩整理并绘制成如图所示的统计图,请求出这组数据的平均数、中位数和众数.
学校共有七、八九三个年级学生近千人,各段人数相近,每段男、女生人数相当,…… |
五.方差(共4小题)
16.(2022•镇江)第1组数据为:0、0、0、1、1、1,第2组数据为:、,其中m、n是正整数下列结论:①当m=n时,两组数据的平均数相等;②当m>n时,第1组数据的平均数小于第2组数据的平均数;③当m<n时,第1组数据的中位数小于第2组数据的中位数;④当m=n时,第2组数据的方差小于第1组数据的方差.其中正确的是( )
A.①② B.①③ C.①④ D.③④
17.(2022•钟楼区校级模拟)甲,乙两名同学参如古诗词大赛,五次比赛成绩的平均分都是90分,如果甲五次比赛成绩的方差为0.8,乙五次比赛成绩的方差为1.2,则这五次比赛成绩比较稳定的是 (填“甲”或“乙”)
18.(2022•海门市二模)峰峰老师为了解所教1班、2班同学们(各有40名学生)的经典文化知识掌握情况,从两个班级中各随机抽取10名学生进行了检测,成绩(百分制)如下:
1班:79,85,73,80,75,59,87,70,75,97.
2班:92,45,80,82,72,81,94,83,70,81.
峰峰老师的简要分析:
| 平均分 | 众数 | 中位数 | 方差 |
1班 | 78 | 75 | 77 | 964 |
2班 | 78 | 81 | 81 | 1704 |
请你解决以下问题:
(1)若对这两个班级的所有学生都进行检测,估计这两个班级内成绩为优秀(不少于80分)的学生一共有多少人?
(2)比较这两个班级的经典文化知识掌握情况,哪个班级更好些?并说明理由(至少从两个不同的角度比较).
19.(2022•江都区二模)某信息咨询机构从A和B两家外卖快送公司分别抽取了20名骑手的月收入进行了一项抽样调查,骑手的月收入(单位:千元)如图所示:
根据以上信息,整理分析数据如下:
(1)完成表格填空;
| 平均月收入/千元 | 中位数/千元 | 众数/千元 | 方差/千元2 |
A公司 | ① | 6 | ③ | 1.2 |
B公司 | 5.5 | ② | 5 | ④ |
(2)根据以上数据,若小张想从这两家外卖快送公司中选择一家应聘骑手,你会推荐哪家公司,请说明理由.
六.可能性的大小(共2小题)
20.(2022•广陵区一模)下列成语或词语所反映的事件中,可能性大小最小的是( )
A.瓮中捉鳖 B.守株待兔 C.旭日东升 D.夕阳西下
21.(2021秋•镇江期末)一只不透明的袋子中装有2个白球和3个红球,现在向袋中再放入n个白球,袋中的这些球除颜色外都相同,搅匀后从中任意摸出1个球,若要使摸到白球比摸到红球的可能性大,则n的最小值等于 .
七.概率公式(共8小题)
22.(2022•淮阴区校级一模)下列说法中,正确的是( )
A.为检测我校是否有学生感染新冠病毒,进行核酸检测应该采用抽查的方式
B.若两名同学连续五次数学测试的平均分相同,则方差较大的同学数学成绩更稳定
C.抛掷一枚均匀的硬币,正面朝上的概率是
D.“打开电视,正在播放广告”是必然事件
23.(2022春•江阴市校级月考)在﹣1,0,,,π中任取一个数,取到无理数的概率是 .
24.(2022•海陵区二模)某数学研究小组为了解各类危险天气对航空飞行安全的影响,从国际航空飞行安全网提供的近百年飞行事故报告中,选取了650起与危险天气相关的个例,研究小组将危险天气细分为9类:火山灰云(A),强降水(B),飞机积冰(C),闪电(D),低能见度(E),沙尘暴(F),雷暴(G),湍流(H),风切变(I),然后对数据进行了收集、整理、描述和分析,相关信息如下(以下数据来源于国际航空飞行安全网):
信息一:各类危险天气导致飞行事故的数量统计图1;
信息二:C类与E类危险天气导致飞行事故的月频数统计图2;
根据以上信息,解决下列问题:
(1)根据以上信息分析可知, 类危险天气导致飞行事故发生的概率虽然最小,但破坏性极强;(填写字母)
(2)近百年来飞机发生重大事故数量占事故总数的 %;(横线上的数精确到0.01)
(3)记C类危险天气导致飞行事故的月频数方差为,记E类危险天气导致飞行事故的月频数方差为,则 ;(填“>”、“=”或“<”)
(4)请结合图1和图2的相关信息,给某航空公司提供一条关于预防飞行事故发生的具体措施.
25.(2021秋•灌云县校级月考)节能灯根据使用寿命分为优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品,质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表(假设节能灯的使用寿命均不超过9000小时).
寿命t/时 | 频数 | 频率 |
4000≤t<5000 | 10 | 0.05 |
5000≤t<6000 | 20 | a |
6000≤t<7000 | 80 | 0.4 |
7000≤t<8000 | b | 0.15 |
8000≤t<9000 | 60 | c |
合计 | 200 | 1 |
(1)根据表中的数据,求a,b,c的值;
(2)某人从这200个节能灯中随机购买1个,求这个节能灯恰好不是次品的概率.
26.(2021秋•金坛区月考)初中学生带手机上学,给学生带来了方便,同时也带来了一些负面影响.针对这种现象某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”看法,统计整理并制作了如下的统计图:
(1)这次调查的家长总人数为 人,表示“无所谓”的家长人数为 人;
(2)随机抽查一个接受调查的家长,恰好抽到“很赞同”的家长的概率是 ;
(3)求扇形统计图中表示“不赞同”的扇形的圆心角度数.
27.(2021•泰州模拟)一个不透明的口袋中放有290个涂有红、黑、白三种颜色的质地相同的球.已知红球的个数比黑球的2倍多40个, .
(1)求袋中红球的个数;
在“①从袋中任取一个球是白球的概率是”,“②从袋中任取一个球是黑球的概率是”这两个条件中任选一个,补充到上面的问题中,并解答问题.(注:如果选择多个条件分别解答,按第一个解答计分)
(2)求从袋中任取一个球是黑球的概率.
28.(2020•高淳区二模)在课外活动时间,小明、小华、小丽做“互相传球”游戏(球从一人随机传给另一人),球从一人传到另一人就记为1次传球.现从小明开始传球.
(1)经过3次传球后,求球仍传到小明处的概率;
(2)经过5次传球后,球传到 处的可能性最大,概率是 .
29.(2020•仪征市模拟)新型冠状病毒爆发,教育部部署了“停课不停学”的有关工作,各地都在进行在线教育.小依同学为了了解网课学习情况,对本班部分同学最喜爱的课程进行了调查,调查课程分别是网上授课、体育锻炼、名著阅读、艺术欣赏和其他课程并制成以下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)本次调查中一共调查了 名学生,其中“名著阅读”所占的圆心角度数为 .
(2)请把条形统计图补全.
(3)在调查的同学中随机选取一名学生,求他恰好最喜爱的课程是“艺术欣赏”的概率.
(4)若该校一共有3000名学生,请估算出全校最喜爱的课程是“体育锻炼”的人数.
八.几何概率(共3小题)
30.(2022•徐州)将一枚飞镖任意投掷到如图所示的正六边形镖盘上,若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )
A. B. C. D.
31.(2022•苏州)如图,在5×6的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB(阴影部分)的概率是( )
A. B. C. D.
32.(2019•秦淮区校级模拟)在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:
连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).
(1)转盘转动共能得到 个不同点,P点落在正方形边上的概率是 ;
(2)求P点落在正方形外部的概率.
考点串讲03 概率投影和视图【6大考点】-九年级上学期数学期末考点大串讲(北师大版)课件PPT: 这是一份考点串讲03 概率投影和视图【6大考点】-九年级上学期数学期末考点大串讲(北师大版)课件PPT,共21页。PPT课件主要包含了期末复习,考点1概率,考点3平行投影,考点4中心投影,考点5三视图,概率的解题技巧,投影的解题技巧,视图的解题技巧等内容,欢迎下载使用。
2022-2023学年九年级数学上学期期末考点大串讲专题03 数据分析与概率(8个考点): 这是一份2022-2023学年九年级数学上学期期末考点大串讲专题03 数据分析与概率(8个考点),共36页。
专题03 有理数的运算(知识梳理+专题过关)-2022-2023学年七年级数学上学期期中期末考点大串讲(苏科版): 这是一份专题03 有理数的运算(知识梳理+专题过关)-2022-2023学年七年级数学上学期期中期末考点大串讲(苏科版),文件包含专题03有理数的运算知识梳理+专题过关-2022-2023学年七年级数学上学期期中期末考点大串讲苏科版解析版docx、专题03有理数的运算知识梳理+专题过关-2022-2023学年七年级数学上学期期中期末考点大串讲苏科版原卷版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。