![2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题含答案01](http://m.enxinlong.com/img-preview/3/3/13592915/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题含答案02](http://m.enxinlong.com/img-preview/3/3/13592915/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题含答案03](http://m.enxinlong.com/img-preview/3/3/13592915/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题含答案
展开蚌埠市2021届高三年级第二次教学质量检查考试
数学(文史类)
本试卷满分150分,考试时间120分钟
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数满足,则
A. B. C. D.
2.已知集合,,则
A. B. C. D.
3.已知是等差数列的前项和,且,则
A. B. C. D.
4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化、阴阳术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机各选取个数组成一个两位数,则其能被整除的概率是
A. B. C. D.
5.已知是三角形的一个内角,,则
A. B. C. D.
6.函数的图象是
A. B. C. D.
7.已知双曲线,离心率,则双曲线的渐近线方程为
A. B. C. D.
8.某校随机调查了名不同的高中生是否喜欢篮球,得到如下的列联表:
| 男 | 女 |
喜欢篮球 | ||
喜欢篮球 |
附:
参照附表,得到的正确结论是
A.在犯错误的概率不超过的前提下,认为“喜欢篮球与性别有关”
B.在犯错误的概率不超过的前提下,认为“喜欢篮球与性别无关”
C.有以上的把握认为“喜欢篮球与性别有关”
D.有以上的把握认为“喜欢篮球与性别无关”
9.已知曲线在点处的切线与直线垂直,则实数的值为
A. B. C. D.
10.函数的部分图象如图所示,则将的图象向右平移个单位后,所得图象对应函数的解析式可以为
A. B. C. D.
11.已知一个三棱锥的三视图如图所示,则该三棱锥的外接球的体积为
A. B. C. D.
12.已知函数函数满足以下三点条件:①定义域为;②对任意,有;③当时,.则函数在区间上零点的个数为
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分.
13.已知实数,满足目标函数的最大值为________.
14.已知单位向量,满足:,则向量与向量的夹角________.
15.已知点是抛物线上一点,为其焦点,以为圆心、为半径的圆交准线于,两点,若为等腰直角三角形,且的面积是,则抛物线的方程是________.
16.在中,角,,的对边分别为,,,若,外接圆周长与周长之比的最小值为________.
三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
已知数列中,,,其前项和,满足.
(1)求数列的通项公式;
(2)若,求数列的前项和.
18.(12分)
为了满足广大人民群众日益增长的体育需求,年月日(全民健身日)某社区开展了体育健身知识竞赛,满分分.若该社区有人参加了这次知识竞赛,为调查居民对体育健身知识的了解情况,该社区以这名参赛者的成绩(单位:分)作为样本进行估计,将成绩整理后分成五组,依次记,,,,,并绘制成如图所示的频率分布直方图.
(1)请补全频率分布直方图并估计这名参赛者成绩的平均数(同一组数据用该组区间的中点值作代表);
(2)采用分层抽样的方法从这人的成绩中抽取容量为的样本,再从该样本成绩不低于分的参赛者中随机抽取名进行问卷调查,求至少有一名参赛者成绩不低于分的概率.
19.(12分)
如图,已知四边形和均为直角梯形,,,且,,.
(1)求证:平面;
(2)求点到平面的距离.
20.(12分)
设定圆,动圆过点且与圆相切,记动圆圆心的轨迹为曲线.
(1)求曲线的方程;
(2)直线与曲线有两个交点,,若,证明:原点到直线的距离为定值.
21.(12分)
已知函数有两个极值点,,且.
(1)求实数的取值范围,并讨论的单调性;
(2)证明:.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修4─4:坐标系与参数方程](10分)
在平面直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,.
(1)求曲线的直角坐标方程;
(2)由直线(为参数,)上的点向曲线引切线,求切线长的最小值.
23.[选修4—5:不等式选讲](10分)
设函数.
(1)若时,解不等式:;
(2)若关于的不等式存在实数解,求实数的取值范围.
蚌埠市2021届高三年级第二次教学质量检查考试
数学(文史类)参考答案及评分标准
一、选择题:
题号 | ||||||||||||
答案 | A | D | B | C | A | C | C | C | D | B | B | A |
二、填空题:
13. 14. 15. 16.
三、解答题:
17.(12分)
解:(1)由题意知,,
从而,即,···································································2分
∵,
∴数列是以为首项,公差为的等差数列,············································4分
∴;········································································ 6分
(2)·······································································8分
∴·········································································10分
···········································································2分
18.(12分)
解:(1)成绩落在的频率:
,·········································································· 2分
补全的频率分布直方图如图:
···········································································4分
样本的平均数:
(分)······································································· 6分
(2)由分层抽样知,成绩在内的参赛者中抽取人,记为,,,,成绩在内的参赛者中抽取人,记为,,则满足条件的所有基本事件为:
,,,,,,,,,,,,,,,共个,············································8分
记“至少有一名参赛者成绩不低于分”为事件,则事件包含的基本事件有:
,,,,,,,,共9个.······················································10分
故所求概率为.······························································12分
19.(12分)
解:(1)证明:在平面中,过作于,交于,连接,
由题意知,且,
∴,,······································································· 3分
∴四边形为平行四边形,
∴,
又平面,平面,
∴平面.····································································6分
(2)由题意知平面,∵平面
∴平面平面,
在平面内过点作交于,
则平面,
∵,
∴,,······································································S分
设点到平面的距离为,
则由得,
由题意知,,
:,·······································································10分
代入,
解得即点到平面的距离为.······················································12分
20.(12分)
解:(1)∵点在圆内
∴圆内切于圆
∴
所以点轨迹是以,为焦点的椭圆,且,,从而,
∴点的轨迹的方程为····························································5分
(2)设,
若直线斜率存在,设,
联立,
整理得:,
,,①······································································6分
∵
∴,①
化简得······································································8分
即,
故原点到直线的距离为,·······················································10分
若直线斜率不存在,设,
联立
解得,,代入①化简得,
即原点到直线的距离为,·······················································11分
综上所述,原点到直线的距离为定值.·············································12分
21.(12分)
解:(1)∵,
令,其对称轴为,
由题意知,是方程的两个不相等的实根,
则··········································································2分
∴··········································································4分
当时,,∴在内为增函数;
当时,,∴在内为减函数;
当时,,∴在内为增函数;······················································6分
(2)证明:由(1)知,,
,··········································································8分
令,
则;
∴在上单调递增,····························································10分
故.
从而·······································································12分
22.(10分)
解:(1)由,,
可得,······································································2分
∵,,,
∴曲线的直角坐标方程为.······················································5分
(2) ∵直线的参数方程为:(为参数,),
∴直线上的点向圆引切线长是
···········································································7分
,
∴当时,切线长最小值为.······················································10分
23.(10分)
解:(1)时,所解不等即为:,··················································2分
两边平方解得,
∴原不等式解集为.····························································5分
(2)存在实数解,
即存在实数解,
令,即,····································································7分
,
当时等号成立,∴,解得.······················································10分
2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(理)试题PDF版含答案: 这是一份2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(理)试题PDF版含答案
2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题PDF版含答案: 这是一份2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(文)试题PDF版含答案
2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(理)试题含答案: 这是一份2021蚌埠高三上学期第二次教学质量检查考试(二模)数学(理)试题含答案