山东省济南市高新区重点名校2022年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )
A.q<16 B.q>16
C.q≤4 D.q≥4
2.函数y=中自变量x的取值范围是( )
A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1
3.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
A. B. C. D.
4.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为( )
A.16 B.14 C.12 D.10
5.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )
A.小亮骑自行车的平均速度是12 km/h
B.妈妈比小亮提前0.5 h到达姥姥家
C.妈妈在距家12 km处追上小亮
D.9:30妈妈追上小亮
6.下列生态环保标志中,是中心对称图形的是( )
A. B. C. D.
7.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为( )
A.80° B.90° C.100° D.120°
8.下列解方程去分母正确的是( )
A.由,得2x﹣1=3﹣3x
B.由,得2x﹣2﹣x=﹣4
C.由,得2y-15=3y
D.由,得3(y+1)=2y+6
9.一次函数与的图象如图所示,给出下列结论:①;②;③当时,.其中正确的有( )
A.0个 B.1个 C.2个 D.3个
10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
11.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=70°,则∠1+∠2= ( )
A.70° B.110° C.130° D.140°
12.将一次函数的图象向下平移2个单位后,当时,的取值范围是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:()0﹣=_____.
14.不等式组的最大整数解是__________.
15.若正六边形的内切圆半径为2,则其外接圆半径为__________.
16.已知a2+a=1,则代数式3﹣a﹣a2的值为_____.
17.因式分解:________.
18.分解因式:x2y﹣xy2=_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,方格纸中每个小正方形的边长都是1个单位长度,在平面直角坐标系中的位置如图所示.
(1)直接写出关于原点的中心对称图形各顶点坐标:________________________;
(2)将绕B点逆时针旋转,画出旋转后图形.求在旋转过程中所扫过的图形的面积和点经过的路径长.
20.(6分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
(1)三辆汽车经过此收费站时,都选择A通道通过的概率是 ;
(2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.
21.(6分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE=______;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.
22.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.
23.(8分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
24.(10分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
25.(10分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.
()请直接写出袋子中白球的个数.
()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)
26.(12分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP=AD. 求证:PD=AB.如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E,当的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ=BC.已知 AD=1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F,连接 CF,G 为 CF 的中点,M、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM=CN,MN 与 DF 相交于点 H,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.
27.(12分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.
建立模型:(1)y与x的函数关系式为:,
解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:
x
0
1
1
3
4
y
0
0
(3)观察所画的图象,写出该函数的两条性质: .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,
∴△>0,即82-4q>0,
∴q<16,
故选 A.
2、A
【解析】
分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.
详解:根据题意得到:,
解得x≥-1且x≠1,
故选A.
点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.
3、C
【解析】
根据向下平移,纵坐标相减,即可得到答案.
【详解】
∵抛物线y=x2+2向下平移1个单位,
∴抛物线的解析式为y=x2+2-1,即y=x2+1.
故选C.
4、B
【解析】
根据切线长定理进行求解即可.
【详解】
∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,
∴AF=AD=2,BD=BE,CE=CF,
∵BE+CE=BC=5,
∴BD+CF=BC=5,
∴△ABC的周长=2+2+5+5=14,
故选B.
【点睛】
本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.
5、D
【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.
【详解】
解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,
∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;
B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),
∴妈妈比小亮提前0.5小时到达姥姥家,故正确;
C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,
∴小亮走的路程为:1×12=12km,
∴妈妈在距家12km出追上小亮,故正确;
D、由图象可知,当t=9时,妈妈追上小亮,故错误;
故选D.
【点睛】
本题考查函数图像的应用,从图像中读取关键信息是解题的关键.
6、B
【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;
C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.
故选B.
【考点】中心对称图形.
7、B
【解析】
根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
【详解】
解:∵将△ABC绕点A顺时针旋转得到△ADE,
∴△ABC≌△ADE,
∴∠B=∠D,
∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
∴∠CFD=∠B+∠BEF=90°,
故选:B.
【点睛】
本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
8、D
【解析】
根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.
【详解】
A.由,得:2x﹣6=3﹣3x,此选项错误;
B.由,得:2x﹣4﹣x=﹣4,此选项错误;
C.由,得:5y﹣15=3y,此选项错误;
D.由,得:3( y+1)=2y+6,此选项正确.
故选D.
【点睛】
本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.
9、B
【解析】
仔细观察图象,①k的正负看函数图象从左向右成何趋势即可;②a,b看y2=x+a,y1=kx+b与y轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.
【详解】
①∵y1=kx+b的图象从左向右呈下降趋势,
∴k<0正确;
②∵y2=x+a,与y轴的交点在负半轴上,
∴a<0,故②错误;
③当x<3时,y1>y2错误;
故正确的判断是①.
故选B.
【点睛】
本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y随x的变化趋势:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
10、A
【解析】
【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】由图可得,
甲步行的速度为:240÷4=60米/分,故①正确,
乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,
乙追上甲用的时间为:16﹣4=12(分钟),故③错误,
乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,
故选A.
【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.
11、D
【解析】
∵四边形ADA'E的内角和为(4-2)•180°=360°,而由折叠可知∠AED=∠A'ED,∠ADE=∠A'DE,∠A=∠A',∴∠AED+∠A'ED+∠ADE+∠A'DE=360°-∠A-∠A'
=360°-2×70°=220°,∴∠1+∠2=180°×2-(∠AED+∠A'ED+∠ADE+∠A'DE)=140°.
12、C
【解析】
直接利用一次函数平移规律,即k不变,进而利用一次函数图象的性质得出答案.
【详解】
将一次函数向下平移2个单位后,得:
,
当时,则:
,
解得:,
当时,,
故选C.
【点睛】
本题主要考查了一次函数平移,解一元一次不等式,正确利用一次函数图象上点的坐标性质得出是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1
【解析】
本题需要运用零次幂的运算法则、立方根的运算法则进行计算.
【详解】
由分析可得:()0﹣=1-2=﹣1.
【点睛】
熟练运用零次幂的运算法则、立方根的运算法则是本题解题的关键.
14、
【解析】
先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.
【详解】
解:,
由不等式①得x≤1,
由不等式②得x>-1,
其解集是-1<x≤1,
所以整数解为0,1,1,
则该不等式组的最大整数解是x=1.
故答案为:1.
【点睛】
考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15、
【解析】
根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
【详解】
解:如图,连接、,作于;
则,
∵六边形正六边形,
∴是等边三角形,
∴,
∴,
∴正六边形的内切圆半径为2,则其外接圆半径为.
故答案为.
【点睛】
本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
16、2
【解析】
∵,
∴,
故答案为2.
17、n(m+2)(m﹣2)
【解析】
先提取公因式 n,再利用平方差公式分解即可.
【详解】
m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..
故答案为n(m+2)(m﹣2).
【点睛】
本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键
18、xy(x﹣y)
【解析】
原式=xy(x﹣y).
故答案为xy(x﹣y).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1),,;(2)作图见解析,面积,.
【解析】
(1)由在平面直角坐标系中的位置可得A、B、C的坐标,根据关于原点对称的点的坐标特点即可得、、的坐标;
(2)由旋转的性质可画出旋转后图形,利用面积的和差计算出,然后根据扇形的面积公式求出,利用旋转过程中扫过的面积进行计算即可.再利用弧长公式求出点C所经过的路径长.
【详解】
解:(1)由在平面直角坐标系中的位置可得:
,,,
∵与关于原点对称,
∴,,
(2)如图所示,即为所求,
∵,,
∴,
∴,
∵,
∴在旋转过程中所扫过的面积:
点所经过的路径:
.
【点睛】
本题考查的是图形的旋转、及扇形面积和扇形弧长的计算,根据已知得出对应点位置,作出图形是解题的关键.
20、(1);(2)
【解析】
(1)用树状图分3次实验列举出所有情况,再看3辆车都选择A通道通过的情况数占总情况数的多少即可;
(2)由(1)可知所有可能的结果数目,再看至少有两辆汽车选择B通道通过的情况数占总情况数的多少即可.
【详解】
解:(1)画树状图得:
共8种情况,甲、乙、丙三辆车都选择A通道通过的情况数有1种,
所以都选择A通道通过的概率为,
故答案为:;
(2)∵共有8种等可能的情况,其中至少有两辆汽车选择B通道通过的有4种情况,
∴至少有两辆汽车选择B通道通过的概率为.
【点睛】
考查了概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.
21、(1)5;(2);(3)时,半径PF=;t=16,半径PF=12.
【解析】
(1)由矩形性质知BC=AD=5,根据BE:CE=3:2知BE=3,利用勾股定理可得AE=5;
(2)由PF∥BE知,据此求得AF=t,再分0≤t≤4和t>4两种情况分别求出EF即可得;
(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得
【详解】
(1)∵四边形ABCD为矩形,
∴BC=AD=5,
∵BE∶CE=3∶2,
则BE=3,CE=2,
∴AE===5.
(2)如图1,
当点P在线段AB上运动时,即0≤t≤4,
∵PF∥BE,
∴=,即=,
∴AF=t,
则EF=AE-AF=5-t,即y=5-t(0≤t≤4);
如图2,
当点P在射线AB上运动时,即t>4,
此时,EF=AF-AE=t-5,即y=t-5(t>4);
综上,;
(3)以点F为圆心的⊙F恰好与直线AB、BC相切时,PF=FG,分以下三种情况:
①当t=0或t=4时,显然符合条件的⊙F不存在;
②当0<t<4时,如解图1,作FG⊥BC于点G,
则FG=BP=4-t,
∵PF∥BC,
∴△APF∽△ABE,
∴=,即=,
∴PF=t,
由4-t=t可得t=,
则此时⊙F的半径PF=;
③当t>4时,如解图2,同理可得FG=t-4,PF=t,
由t-4=t可得t=16,
则此时⊙F的半径PF=12.
【点睛】
本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.
22、原式==﹣2.
【解析】
分析:原式利用分式混合运算顺序和运算法则化简,再将a的值代入计算可得.
详解:原式=
=
=,
当a=﹣1时,
原式==﹣2.
点睛:本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
23、证明见解析.
【解析】
试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.
试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.
∵M是BC的中点,∴BM=CM.
在△BDM和△CEM中,∵,
∴△BDM≌△CEM(SAS).∴MD=ME.
考点:1.等腰三角形的性质;2.全等三角形的判定与性质.
24、(1)详见解析;(2)40%;(3)105;(4).
【解析】
(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
(3)根据样本估计总体的方法计算即可;
(4)利用概率公式即可得出结论.
【详解】
(1)由条形图知,男生共有:10+20+13+9=52人,
∴女生人数为100-52=48人,
∴参加武术的女生为48-15-8-15=10人,
∴参加武术的人数为20+10=30人,
∴30÷100=30%,
参加器乐的人数为9+15=24人,
∴24÷100=24%,
补全条形统计图和扇形统计图如图所示:
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
(3)500×21%=105(人).
答:估计其中参加“书法”项目活动的有105人.
(4).
答:正好抽到参加“器乐”活动项目的女生的概率为.
【点睛】
此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
25、(1)袋子中白球有2个;(2).
【解析】
试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.
试题解析:(1)设袋子中白球有x个,
根据题意得:=,
解得:x=2,
经检验,x=2是原分式方程的解,
∴袋子中白球有2个;
(2)画树状图得:
∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,
∴两次都摸到相同颜色的小球的概率为:.
考点:列表法与树状图法;概率公式.
26、(1)证明见解析(2) (3)
【解析】
(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;
(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;
(3)GH=,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.
【详解】
(1)在图1中,设AD=BC=a,则有AB=CD=a,
∵四边形ABCD是矩形,
∴∠A=90°,
∵PA=AD=BC=a,
∴PD==a,
∵AB=a,
∴PD=AB;
(2)如图,作点P关于BC的对称点P′,
连接DP′交BC于点E,此时△PDE的周长最小,
设AD=PA=BC=a,则有AB=CD=a,
∵BP=AB-PA,
∴BP′=BP=a-a,
∵BP′∥CD,
∴ ;
(3)GH=,理由为:
由(2)可知BF=BP=AB-AP,
∵AP=AD,
∴BF=AB-AD,
∵BQ=BC,
∴AQ=AB-BQ=AB-BC,
∵BC=AD,
∴AQ=AB-AD,
∴BF=AQ,
∴QF=BQ+BF=BQ+AQ=AB,
∵AB=CD,
∴QF=CD,
∵QM=CN,
∴QF-QM=CD-CN,即MF=DN,
∵MF∥DN,
∴∠NFH=∠NDH,
在△MFH和△NDH中,
,
∴△MFH≌△NDH(AAS),
∴FH=DH,
∵G为CF的中点,
∴GH是△CFD的中位线,
∴GH=CD=×2=.
【点睛】
此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.
27、 (1) ①y=;②;(1)见解析;(3)见解析
【解析】
(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.
【详解】
(1)设AP=x
①当0≤x≤1时
∵MN∥BD
∴△APM∽△AOD
∴
∴MP=
∵AC垂直平分MN
∴PN=PM=x
∴MN=x
∴y=AP•MN=
②当1<x≤4时,P在线段OC上,
∴CP=4﹣x
∴△CPM∽△COD
∴
∴PM=
∴MN=1PM=4﹣x
∴y==﹣
∴y=
(1)由(1)
当x=1时,y=
当x=1时,y=1
当x=3时,y=
(3)根据(1)画出函数图象示意图可知
1、当0≤x≤1时,y随x的增大而增大
1、当1<x≤4时,y随x的增大而减小
【点睛】
本题考查函数,解题的关键是数形结合思想.
2022年徐州市重点名校中考数学考试模拟冲刺卷含解析: 这是一份2022年徐州市重点名校中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
2022年山东省枣庄市山亭区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年山东省枣庄市山亭区重点达标名校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了一、单选题,-2的绝对值是等内容,欢迎下载使用。
2022年山东省济南市章丘市达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年山东省济南市章丘市达标名校中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某校八,分式方程的解为等内容,欢迎下载使用。