|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析01
    2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析02
    2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析

    展开
    这是一份2022届山东省济南市高新区重点名校中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列判断错误的是,计算的值等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.不等式组的解集在数轴上可表示为(  )
    A. B. C. D.
    2.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是(  )

    A.7 B.10 C.11 D.12
    3.若等式(-5)□5=–1成立,则□内的运算符号为( )
    A.+ B.– C.× D.÷
    4.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为(  )

    A.9 B.10 C.12 D.14
    5.某春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
    成绩






    人数






    这些运动员跳高成绩的中位数是(  )
    A. B. C. D.
    6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是(  )

    A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
    B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
    C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
    D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
    7.下列判断错误的是(  )
    A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
    C.两条对角线垂直且平分的四边形是正方形 D.四条边都相等的四边形是菱形
    8.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为(  )
    A.5.3×103 B.5.3×104 C.5.3×107 D.5.3×108
    9.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是(  )

    A. B. C. D.
    10.计算的值( )
    A.1 B. C.3 D.
    11.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )
    A.30° B.50° C.40° D.70°
    12.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为( )

    A.1 B.2 C.3 D.4
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.化简:÷=_____.
    14.若2a﹣b=5,a﹣2b=4,则a﹣b的值为________.
    15.2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有________万人.

    16.已知抛物线y=x2-x-1与x轴的一个交点为(m,0),则代数式m2-m+2017的值为____.
    17.抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为_____.
    18.若一个圆锥的底面圆的周长是cm,母线长是,则该圆锥的侧面展开图的圆心角度数是_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.
    (1)求证:CD∥AB;
    (2)填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    20.(6分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
    图1 各项报名人数扇形统计图:

    图2 各项报名人数条形统计图:

    根据以上信息解答下列问题:
    (1)学生报名总人数为 人;
    (2)如图1项目D所在扇形的圆心角等于 ;
    (3)请将图2的条形统计图补充完整;
    (4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
    21.(6分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.
    (1)求证:DE是⊙O的切线;
    (2)若AD=16,DE=10,求BC的长.

    22.(8分)已知直线y=mx+n(m≠0,且m,n为常数)与双曲线y=(k<0)在第一象限交于A,B两点,C,D是该双曲线另一支上两点,且A、B、C、D四点按顺时针顺序排列.
    (1)如图,若m=﹣,n=,点B的纵坐标为,
    ①求k的值;
    ②作线段CD,使CD∥AB且CD=AB,并简述作法;
    (2)若四边形ABCD为矩形,A的坐标为(1,5),
    ①求m,n的值;
    ②点P(a,b)是双曲线y=第一象限上一动点,当S△APC≥24时,则a的取值范围是   .

    23.(8分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.

    请根据以上的信息,回答下列问题:
    (1)补全扇形统计图和条形统计图;
    (2)所抽查学生参加社会实践活动天数的众数是   (选填:A、B、C、D、E);
    (3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
    24.(10分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.

    25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.

    26.(12分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
    (1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
    (2)求证:
    (3)若BC=AB,求tan∠CDF的值.

    27.(12分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:
    ∵不等式①得:x>1,
    解不等式②得:x≤2,
    ∴不等式组的解集为1<x≤2,
    在数轴上表示为:,
    故选A.
    【点睛】
    本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
    2、B
    【解析】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=4,CD=AB=6,
    ∵由作法可知,直线MN是线段AC的垂直平分线,
    ∴AE=CE,
    ∴AE+DE=CE+DE=AD,
    ∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.
    故选B.
    3、D
    【解析】
    根据有理数的除法可以解答本题.
    【详解】
    解:∵(﹣5)÷5=﹣1,
    ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
    故选D.
    【点睛】
    考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    4、A
    【解析】
    利用平行四边形的性质即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=3,OD=OB==2,OA=OC=4,
    ∴△OBC的周长=3+2+4=9,
    故选:A.
    【点睛】
    题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    5、C
    【解析】
    根据中位数的定义解答即可.
    【详解】
    解:在这15个数中,处于中间位置的第8个数是1.1,所以中位数是1.1.
    所以这些运动员跳高成绩的中位数是1.1.
    故选:C.
    【点睛】
    本题考查了中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
    6、D
    【解析】
    根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
    【详解】
    根据图中信息,某种结果出现的频率约为0.16,
    在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
    从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
    掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
    掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
    7、C
    【解析】
    根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,对选项进行判断即可
    【详解】
    解:A、两组对边分别相等的四边形是平行四边形,故本选项正确;
    B、四个内角都相等的四边形是矩形,故本选项正确;
    C、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误;
    D、四条边都相等的四边形是菱形,故本选项正确.
    故选C
    【点睛】
    此题综合考查了平行四边形的判定,矩形的判定,菱形的判定,正方形的判定,熟练掌握判定法则才是解题关键
    8、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:5300万=53000000=.
    故选C.
    【点睛】
    在把一个绝对值较大的数用科学记数法表示为的形式时,我们要注意两点:①必须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).
    9、C
    【解析】
    根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.
    【详解】
    解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.
    【点睛】
    考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;
    10、A
    【解析】
    根据有理数的加法法则进行计算即可.
    【详解】

    故选:A.
    【点睛】
    本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.
    11、A
    【解析】
    利用三角形内角和求∠B,然后根据相似三角形的性质求解.
    【详解】
    解:根据三角形内角和定理可得:∠B=30°,
    根据相似三角形的性质可得:∠B′=∠B=30°.
    故选:A.
    【点睛】
    本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.
    12、C
    【解析】
    本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.
    【详解】
    由题意得:E、M、D位于反比例函数图象上,

    则,
    过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.
    又∵M为矩形ABCO对角线的交点,
    ∴S矩形ABCO=4S□ONMG=4|k|,
    ∵函数图象在第一象限,k>0,
    ∴.
    解得:k=1.
    故选C.
    【点睛】
    本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、m
    【解析】
    解:原式=•=m.故答案为m.
    14、1.
    【解析】
    试题分析:把这两个方程相加可得1a-1b=9,两边同时除以1可得a-b=1.
    考点:整体思想.
    15、1
    【解析】
    分析:用总人数乘以样本中出境游东南亚地区的百分比即可得.
    详解:出境游东南亚地区的游客约有700×(1﹣16%﹣15%﹣11%﹣13%)=700×45%=1(万).故答案为1.
    点睛:本题主要考查扇形统计图与样本估计总体,解题的关键是掌握各项目的百分比之和为1,利用样本估计总体思想的运用.
    16、1
    【解析】
    把点(m,0)代入y=x2﹣x﹣1,求出m2﹣m=1,代入即可求出答案.
    【详解】
    ∵二次函数y=x2﹣x﹣1的图象与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,∴m2﹣m=1,∴m2﹣m+2017=1+2017=1.
    故答案为:1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,求代数式的值的应用,解答此题的关键是求出m2﹣m=1,难度适中.
    17、1
    【解析】
    由抛物线y=x2-2x+m与x轴只有一个交点可知,对应的一元二次方程x2-2x+m=2,根的判别式△=b2-4ac=2,由此即可得到关于m的方程,解方程即可求得m的值.
    【详解】
    解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,
    ∴△=2,
    ∴b2﹣4ac=22﹣4×1×m=2;
    ∴m=1.
    故答案为1.
    【点睛】
    本题考查了抛物线与x轴的交点问题,注:①抛物线与x轴有两个交点,则△>2;②抛物线与x轴无交点,则△<2;③抛物线与x轴有一个交点,则△=2.
    18、
    【解析】
    利用圆锥的底面周长和母线长求得圆锥的侧面积,然后再利用圆锥的面积的计算方法求得侧面展开扇形的圆心角的度数即可
    【详解】
    ∵圆锥的底面圆的周长是,
    ∴圆锥的侧面扇形的弧长为 cm,

    解得:
    故答案为.
    【点睛】
    此题考查弧长的计算,解题关键在于求得圆锥的侧面积

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    20、(1)200;(2)54°;(3)见解析;(4)
    【解析】
    (1)根据A的人数及所占的百分比即可求出总人数;
    (2)用D的人数除以总人数再乘360°即可得出答案;
    (3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
    (4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
    【详解】
    解:(1)学生报名总人数为(人),
    故答案为:200;
    (2)项目所在扇形的圆心角等于,
    故答案为:54°;
    (3)项目的人数为,
    补全图形如下:

    (4)画树状图得:

    所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
    恰好选中甲、乙两名同学的概率为.
    【点睛】
    本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
    21、(1)证明见解析;(2)15.
    【解析】
    (1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.
    (2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
    【详解】
    (1)证明:连结OD,∵∠ACB=90°,
    ∴∠A+∠B=90°,
    又∵OD=OB,
    ∴∠B=∠BDO,
    ∵∠ADE=∠A,
    ∴∠ADE+∠BDO=90°,
    ∴∠ODE=90°.
    ∴DE是⊙O的切线;
    (2)连结CD,∵∠ADE=∠A,

    ∴AE=DE.
    ∵BC是⊙O的直径,∠ACB=90°.
    ∴EC是⊙O的切线.
    ∴DE=EC.
    ∴AE=EC,
    又∵DE=10,
    ∴AC=2DE=20,
    在Rt△ADC中,DC=
    设BD=x,在Rt△BDC中,BC2=x2+122,
    在Rt△ABC中,BC2=(x+16)2﹣202,
    ∴x2+122=(x+16)2﹣202,解得x=9,
    ∴BC=.
    【点睛】
    考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.
    22、(1)①k= 5;②见解析,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;(2)①;②0<a<1或a>5
    【解析】
    (1)①求出直线的解析式,利用待定系数法即可解决问题;②如图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;
    (2)①求出A,B两点坐标,利用待定系数法即可解决问题;②分两种情形求出△PAC的面积=24时a的值,即可判断.
    【详解】
    (1)①∵,,
    ∴直线的解析式为,
    ∵点B在直线上,纵坐标为,
    ∴,
    解得x=2
    ∴,
    ∴;
    ②如下图,由此AO交双曲线于点C,延长BO交双曲线于点D,线段CD即为所求;

    (2)①∵点在上,
    ∴k=5,
    ∵四边形ABCD是矩形,
    ∴OA=OB=OC=OD,
    ∴A,B关于直线y=x对称,
    ∴,
    则有:,解得;
    ②如下图,当点P在点A的右侧时,作点C关于y轴的对称点C′,连接AC,AC′,PC,PC′,PA.

    ∵A,C关于原点对称,,
    ∴,
    ∵,
    当时,
    ∴,
    ∴,
    ∴a=5或(舍弃),
    当点P在点A的左侧时,同法可得a=1,
    ∴满足条件的a的范围为或.
    【点睛】
    本题属于反比例函数与一次函数的综合问题,熟练掌握待定系数法解函数解析式以及交点坐标的求法是解决本题的关键.
    23、(1)见解析;(2)A;(3)800人.
    【解析】
    (1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;
    (2)根据众数的定义即可求解;
    (3)利用总人数2000乘以对应的百分比即可求解.
    【详解】
    解:(1)∵被调查的学生人数为24÷40%=60人,
    ∴D类别人数为60﹣(24+12+15+3)=6人,
    则D类别的百分比为×100%=10%,
    补全图形如下:

    (2)所抽查学生参加社会实践活动天数的众数是A,
    故答案为:A;
    (3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、(1)证明见解析;(2)AD=2.
    【解析】
    (1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;
    (2)先证明OA⊥BC,由垂径定理得:,FB=BC,根据勾股定理计算AF、OB、AD的长即可.
    【详解】
    (1)如图,连接OA,交BC于F,

    则OA=OB,
    ∴∠D=∠DAO,
    ∵∠D=∠C,
    ∴∠C=∠DAO,
    ∵∠BAE=∠C,
    ∴∠BAE=∠DAO,
    ∵BD是⊙O的直径,
    ∴∠BAD=90°,
    即∠DAO+∠BAO=90°,
    ∴∠BAE+∠BAO=90°,即∠OAE=90°,
    ∴AE⊥OA,
    ∴AE与⊙O相切于点A;
    (2)∵AE∥BC,AE⊥OA,
    ∴OA⊥BC,
    ∴,FB=BC,
    ∴AB=AC,
    ∵BC=2,AC=2,
    ∴BF=,AB=2,
    在Rt△ABF中,AF==1,
    在Rt△OFB中,OB2=BF2+(OB﹣AF)2,
    ∴OB=4,
    ∴BD=8,
    ∴在Rt△ABD中,AD=.
    【点睛】
    本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.
    25、 (1) 反比例函数的解析式为y=,一次函数的解析式为y=﹣x+1.(2)2.
    【解析】
    (1)根据反比例函数y2=的图象过点A(2,3),利用待定系数法求出m,进而得出B点坐标,然后利用待定系数法求出一次函数解析式;
    (2)设直线y1=kx+b与x轴交于C,求出C点坐标,根据S△AOB=S△AOC﹣S△BOC,列式计算即可.
    【详解】
    (1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n,∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).
    把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+1.
    (2)如图,设直线y=﹣x+1与x轴交于C,则C(2,0).
    S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.

    【点睛】
    本题考查了待定系数法求反比例函数、一次函数解析式以及求三角形面积等知识,根据已知得出B点坐标以及得出S△AOB=S△AOC﹣S△BOC是解题的关键.
    26、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
    【解析】
    试题分析:
    (1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
    (2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
    (3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
    可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
    试题解析:
    (1)∠CBD与∠CEB相等,理由如下:
    ∵BC切⊙O于点B,
    ∴∠CBD=∠BAD,
    ∵∠BAD=∠CEB,
    ∴∠CEB=∠CBD,
    (2)∵∠C=∠C,∠CEB=∠CBD,
    ∴∠EBC=∠BDC,
    ∴△EBC∽△BDC,
    ∴;

    (3)设AB=2x,∵BC=AB,AB是直径,
    ∴BC=3x,OB=OD=x,
    ∵∠ABC=90°,
    ∴OC=x,
    ∴CD=(-1)x,
    ∵AO=DO,
    ∴∠CDF=∠A=∠DBF,
    ∴△DCF∽△BCD,
    ∴==,
    ∵tan∠DBF==,
    ∴tan∠CDF=.
    点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
    27、甲建筑物的高度约为,乙建筑物的高度约为.
    【解析】
    分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
    详解:如图,过点作,垂足为.

    则.
    由题意可知,,,,,.
    可得四边形为矩形.
    ∴,.
    在中,,
    ∴.
    在中,,
    ∴.
    ∴ .
    ∴.
    答:甲建筑物的高度约为,乙建筑物的高度约为.
    点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.

    相关试卷

    四川省成都市高新区重点名校2021-2022学年中考数学对点突破模拟试卷含解析: 这是一份四川省成都市高新区重点名校2021-2022学年中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,2cs 30°的值等于,下列运算正确的是,如果等内容,欢迎下载使用。

    山东省济南市高新区重点名校2022年中考数学考试模拟冲刺卷含解析: 这是一份山东省济南市高新区重点名校2022年中考数学考试模拟冲刺卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列解方程去分母正确的是等内容,欢迎下载使用。

    2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析: 这是一份2022年蒙古准格尔旗重点名校中考数学对点突破模拟试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,的值等于,下列各式正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map