年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析第1页
    辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析第2页
    辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份辽宁省营口市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为(  )米.
    A.42.3×104 B.4.23×102 C.4.23×105 D.4.23×106
    2.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  )
    A.2 B.﹣2 C.4 D.﹣4
    3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )
    A. B. C. D.
    4.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为(  )
    A.10 B.8 C.5 D.3
    5.在平面直角坐标系中,点(2,3)所在的象限是(   )
    A.第一象限                            B.第二象限                            C.第三象限                            D.第四象限
    6.解分式方程 ,分以下四步,其中,错误的一步是(  )
    A.方程两边分式的最简公分母是(x﹣1)(x+1)
    B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6
    C.解这个整式方程,得x=1
    D.原方程的解为x=1
    7.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为(  )

    A.正比例函数y=kx(k为常数,k≠0,x>0)
    B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)
    C.反比例函数y=(k为常数,k≠0,x>0)
    D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)
    8.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为(  )

    A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
    9.如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体(  )

    A.主视图不变,左视图不变
    B.左视图改变,俯视图改变
    C.主视图改变,俯视图改变
    D.俯视图不变,左视图改变
    10.在△ABC中,若=0,则∠C的度数是( )
    A.45° B.60° C.75° D.105°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)

    12.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.

    13.如图,点E在正方形ABCD的外部,∠DCE=∠DEC,连接AE交CD于点F,∠CDE的平分线交EF于点G,AE=2DG.若BC=8,则AF=_____.

    14.在△ABC中,∠C=90°,若tanA=,则sinB=______.
    15.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.

    16.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是   (添加一个条件即可).

    三、解答题(共8题,共72分)
    17.(8分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.

    18.(8分)(1)计算:﹣22+|﹣4|+()-1+2tan60°
    (2) 求 不 等 式 组的 解 集 .
    19.(8分)已知:如图,∠ABC,射线BC上一点D,
    求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.

    20.(8分)(1)(﹣2)2+2sin 45°﹣
    (2)解不等式组,并将其解集在如图所示的数轴上表示出来.

    21.(8分)某初中学校组织400 位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2:
    表1:甲调查九年级30位同学植树情况统计表(单位:棵)
    每人植树情况
    7
    8
    9
    10
    人数
    3
    6
    15
    6
    频率
    0.1
    0.2
    0.5
    0.2
    表2:乙调查三个年级各10位同学植树情况统计表(单位:棵)
    每人植树情况
    6
    7
    8
    9
    10
    人数
    3
    6
    3
    11
    6
    频率
    0.1
    0.2
    0.1
    0.4
    0.2
    根据以上材料回答下列问题:
    (1)表1中30位同学植树情况的中位数是   棵;
    (2)已知表2的最后两列中有一个错误的数据,这个错误的数据是   ,正确的数据应该是   ;
    (3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?
    22.(10分)汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.若前四局双方战成2:2,那么甲队最终获胜的概率是__________;现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?
    23.(12分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.
    (1)2014年这种礼盒的进价是多少元/盒?
    (2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
    24.如图,正方形ABCD中,E,F分别为BC,CD上的点,且AE⊥BF,垂足为G.

    (1)求证:AE=BF;(2)若BE=,AG=2,求正方形的边长.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    423公里=423 000米=4.23×105米.
    故选C.
    2、B
    【解析】
    利用待定系数法求出m,再结合函数的性质即可解决问题.
    【详解】
    解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
    ∴m2=4,
    ∴m=±2,
    ∵y的值随x值的增大而减小,
    ∴m<0,
    ∴m=﹣2,
    故选:B.
    【点睛】
    本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    3、C
    【解析】
    设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
    【详解】
    解:设大马有x匹,小马有y匹,由题意得:,
    故选C.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    4、B
    【解析】
    ∵摸到红球的概率为,
    ∴,
    解得n=8,
    故选B.
    5、A
    【解析】
    根据点所在象限的点的横纵坐标的符号特点,就可得出已知点所在的象限.
    【详解】
    解:点(2,3)所在的象限是第一象限.
    故答案为:A
    【点睛】
    考核知识点:点的坐标与象限的关系.
    6、D
    【解析】
    先去分母解方程,再检验即可得出.
    【详解】
    方程无解,虽然化简求得,但是将代入原方程中,可发现和的分母都为零,即无意义,所以,即方程无解
    【点睛】
    本题考查了分式方程的求解与检验,在分式方程中,一般求得的x值都需要进行检验
    7、C
    【解析】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到AE与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到∠A=∠B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由∠FQO与∠OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B,再由切线长定理得到OD与OC分别为∠EOG与∠FOG的平分线,得到∠DOC为∠EOF的一半,即∠DOC=∠A=∠B,又∠GCO=∠FCO,得到三角形DOC与三角形OBC相似,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项.
    【详解】
    延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,

    ∵AE,BF为圆O的切线,
    ∴OE⊥AE,OF⊥FB,
    ∴∠AEO=∠BFO=90°,
    在Rt△AEO和Rt△BFO中,
    ∵,
    ∴Rt△AEO≌Rt△BFO(HL),
    ∴∠A=∠B,
    ∴△QAB为等腰三角形,
    又∵O为AB的中点,即AO=BO,
    ∴QO⊥AB,
    ∴∠QOB=∠QFO=90°,
    又∵∠OQF=∠BQO,
    ∴△QOF∽△QBO,
    ∴∠B=∠QOF,
    同理可以得到∠A=∠QOE,
    ∴∠QOF=∠QOE,
    根据切线长定理得:OD平分∠EOG,OC平分∠GOF,
    ∴∠DOC=∠EOF=∠A=∠B,
    又∵∠GCO=∠FCO,
    ∴△DOC∽△OBC,
    同理可以得到△DOC∽△DAO,
    ∴△DAO∽△OBC,
    ∴,
    ∴AD•BC=AO•OB=AB2,即xy=AB2为定值,
    设k=AB2,得到y=,
    则y与x满足的函数关系式为反比例函数y=(k为常数,k≠0,x>0).
    故选C.
    【点睛】
    本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.
    8、D
    【解析】
    解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.

    点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
    9、A
    【解析】
    分别得到将正方体①移走前后的三视图,依此即可作出判断.
    【详解】
    将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。
    将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
    将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。
    故选A.
    【点睛】
    考查了三视图,从几何体的正面,左面,上面看到的平面图形中正方形的列数以及每列正方形的个数是解决本题的关键.
    10、C
    【解析】
    根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.
    【详解】
    由题意,得 cosA=,tanB=1,
    ∴∠A=60°,∠B=45°,
    ∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2.9
    【解析】
    试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.
    考点:解直角三角形.
    12、﹣1<x<2
    【解析】
    根据图象得出取值范围即可.
    【详解】
    解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
    所以当y1>y2时,﹣1<x<2,
    故答案为﹣1<x<2
    【点睛】
    此题考查二次函数与不等式,关键是根据图象得出取值范围.
    13、
    【解析】
    如图作DH⊥AE于H,连接CG.设DG=x,

    ∵∠DCE=∠DEC,
    ∴DC=DE,
    ∵四边形ABCD是正方形,
    ∴AD=DC,∠ADF=90°,
    ∴DA=DE,
    ∵DH⊥AE,
    ∴AH=HE=DG,
    在△GDC与△GDE中,

    ∴△GDC≌△GDE(SAS),
    ∴GC=GE,∠DEG=∠DCG=∠DAF,
    ∵∠AFD=∠CFG,
    ∴∠ADF=∠CGF=90°,
    ∴2∠GDE+2∠DEG=90°,
    ∴∠GDE+∠DEG=45°,
    ∴∠DGH=45°,
    在Rt△ADH中,AD=8,AH=x,DH=x,
    ∴82=x2+(x)2,
    解得:x=,
    ∵△ADH∽△AFD,
    ∴,
    ∴AF==4.
    故答案为4.
    14、
    【解析】
    分析:直接根据题意表示出三角形的各边,进而利用锐角三角函数关系得出答案.
    详解:如图所示:

    ∵∠C=90°,tanA=,
    ∴设BC=x,则AC=2x,故AB=x,
    则sinB=.
    故答案为: .
    点睛:此题主要考查了锐角三角函数关系,正确表示各边长是解题关键.
    15、48°
    【解析】
    连接OA,分别求出正五边形ABCDE和正三角形AMN的中心角,结合图形计算即可.
    【详解】
    连接OA,

    ∵五边形ABCDE是正五边形,
    ∴∠AOB==72°,
    ∵△AMN是正三角形,
    ∴∠AOM==120°,
    ∴∠BOM=∠AOM-∠AOB=48°,
    故答案为48°.
    点睛:本题考查的是正多边形与圆的有关计算,掌握正多边形的中心角的计算公式是解题的关键.
    16、AE=AD(答案不唯一).
    【解析】
    要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加AE=AD,利用SAS来判定其全等;或添加∠B=∠C,利用ASA来判定其全等;或添加∠AEB=∠ADC,利用AAS来判定其全等.等(答案不唯一).

    三、解答题(共8题,共72分)
    17、(1)见解析;(2)⊙O直径的长是4.
    【解析】
    (1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;
    (2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.
    【详解】
    证明:(1)连接BD,交AC于F,

    ∵DC⊥BE,
    ∴∠BCD=∠DCE=90°,
    ∴BD是⊙O的直径,
    ∴∠DEC+∠CDE=90°,
    ∵∠DEC=∠BAC,
    ∴∠BAC+∠CDE=90°,
    ∵弧BC=弧BC,
    ∴∠BAC=∠BDC,
    ∴∠BDC+∠CDE=90°,
    ∴BD⊥DE,
    ∴DE是⊙O切线;
    解:(2)∵AC∥DE,BD⊥DE,
    ∴BD⊥AC.
    ∵BD是⊙O直径,
    ∴AF=CF,
    ∴AB=BC=8,
    ∵BD⊥DE,DC⊥BE,
    ∴∠BCD=∠BDE=90°,∠DBC=∠EBD,
    ∴△BDC∽△BED,
    ∴=,
    ∴BD2=BC•BE=8×10=80,
    ∴BD=4.
    即⊙O直径的长是4.
    【点睛】
    此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.
    18、(1)1;(2)-1≤x

    相关试卷

    枣庄市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份枣庄市重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了方程=的解为等内容,欢迎下载使用。

    河南卢氏县重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份河南卢氏县重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,已知,某反比例函数的图象经过点等内容,欢迎下载使用。

    甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析:

    这是一份甘肃省重点名校2021-2022学年初中数学毕业考试模拟冲刺卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,化简•a5所得的结果是, 1分等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map