|试卷下载
搜索
    上传资料 赚现金
    贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析01
    贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析02
    贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份贵州省黔西南州兴义市鲁屯中学2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了实数的倒数是,下列方程中,是一元二次方程的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(  )
    A.y1<y2<y3 B.y2<y3<y1 C.y3<y2<y1 D.y2<y1<y3
    2.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )

    A. B. C. D.
    3.计算x﹣2y﹣(2x+y)的结果为(  )
    A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y
    4.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )
    A.这组数据的平均数是6,中位数是6 B.这组数据的平均数是6,中位数是7
    C.这组数据的平均数是5,中位数是6 D.这组数据的平均数是5,中位数是7
    5.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).

    A.60 ° B.75° C.85° D.90°
    6.实数的倒数是( )
    A. B. C. D.
    7.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    8.下列方程中,是一元二次方程的是(  )
    A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x(x﹣1)=0
    9.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是(  )

    A.2011﹣2014年最高温度呈上升趋势
    B.2014年出现了这6年的最高温度
    C.2011﹣2015年的温差成下降趋势
    D.2016年的温差最大
    10.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且01;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )
    A.1个 B.2个 C.3个 D.4个
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.

    12.如图,A、B是反比例函数y=(k>0)图象上的点,A、B两点的横坐标分别是a、2a,线段AB的延长线交x轴于点C,若S△AOC=1.则k=_______.

    13.若关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是_____.
    14.如图放置的正方形,正方形,正方形,…都是边长为的正方形,点在轴上,点,…,都在直线上,则的坐标是__________,的坐标是______.

    15.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).

    16.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_____.
    17.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.

    19.(5分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
    (1)求一件A型、B型丝绸的进价分别为多少元?
    (2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
    ①求m的取值范围.
    ②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
    20.(8分)如图1,正方形ABCD的边长为8,动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,当点E运动到终点C时,点F也停止运动,连接AE交对角线BD于点N,连接EF交BC于点M,连接AM.
    (参考数据:sin15°=,cos15°=,tan15°=2﹣)
    (1)在点E、F运动过程中,判断EF与BD的位置关系,并说明理由;
    (2)在点E、F运动过程中,①判断AE与AM的数量关系,并说明理由;②△AEM能为等边三角形吗?若能,求出DE的长度;若不能,请说明理由;
    (3)如图2,连接NF,在点E、F运动过程中,△ANF的面积是否变化,若不变,求出它的面积;若变化,请说明理由.

    21.(10分)如图,已知抛物线y=ax2﹣2ax+b与x轴交于A、B(3,0)两点,与y轴交于点C,且OC=3OA,设抛物线的顶点为D.
    (1)求抛物线的解析式;
    (2)在抛物线对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
    (3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

    22.(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
    求证:四边形是菱形若,,求四边形的面积
    23.(12分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
    (1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
    (2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
    (3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
    24.(14分)已知:如图,在平面直角坐标系xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
    (1)求该反比例函数的解析式;
    (1)求三角形CDE的面积.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.
    【详解】
    ∵反比例函数y=中,k=1>0,
    ∴此函数图象的两个分支在一、三象限,
    ∵x1<x2<0<x1,
    ∴A、B在第三象限,点C在第一象限,
    ∴y1<0,y2<0,y1>0,
    ∵在第三象限y随x的增大而减小,
    ∴y1>y2,
    ∴y2<y1<y1.
    故选D.
    【点睛】
    本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.
    2、A
    【解析】
    根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
    【详解】
    解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
    ∴二元一次方程组的解为
    故选A.
    【点睛】
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    3、C
    【解析】
    原式去括号合并同类项即可得到结果.
    【详解】
    原式,
    故选:C.
    【点睛】
    本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.
    4、C
    【解析】
    根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.
    【详解】
    对于数据:6,3,4,7,6,0,1,
    这组数据按照从小到大排列是:0,3,4,6,6,7,1,
    这组数据的平均数是: 中位数是6,
    故选C.
    【点睛】
    本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.
    5、C
    【解析】
    试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
    如图,设AD⊥BC于点F.则∠AFB=90°,

    ∴在Rt△ABF中,∠B=90°-∠BAD=25°,
    ∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
    即∠BAC的度数为85°.故选C.
    考点: 旋转的性质.
    6、D
    【解析】
    因为=,
    所以的倒数是.
    故选D.
    7、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    8、D
    【解析】
    试题解析:含有两个未知数,不是整式方程,C没有二次项.
    故选D.
    点睛:一元二次方程需要满足三个条件:含有一个未知数,未知数的最高次数是2,整式方程.
    9、C
    【解析】
    利用折线统计图结合相应数据,分别分析得出符合题意的答案.
    【详解】
    A选项:年最高温度呈上升趋势,正确;
    B选项:2014年出现了这6年的最高温度,正确;
    C选项:年的温差成下降趋势,错误;
    D选项:2016年的温差最大,正确;
    故选C.
    【点睛】
    考查了折线统计图,利用折线统计图获取正确信息是解题关键.
    10、A
    【解析】
    如图,
    且图像与y轴交于点,
    可知该抛物线的开口向下,即,
    ①当时,

    故①错误.
    ②由图像可知,当时,


    故②错误.
    ③∵
    ∴,
    又∵,
    ∴,
    ∴,
    ∴,
    故③错误;
    ④∵,,
    又∵,
    ∴.
    故④正确.
    故答案选A.

    【点睛】
    本题考查二次函数系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    【分析】连接半径和弦AE,根据直径所对的圆周角是直角得:∠AEB=90°,继而可得AE和BE的长,所以图中弓形的面积为扇形OBE的面积与△OBE面积的差,因为OA=OB,所以△OBE的面积是△ABE面积的一半,可得结论.
    【详解】如图,连接OE、AE,
    ∵AB是⊙O的直径,
    ∴∠AEB=90°,
    ∵四边形ABCD是平行四边形,
    ∴AB=CD=4,∠B=∠D=30°,
    ∴AE=AB=2,BE==2,
    ∵OA=OB=OE,
    ∴∠B=∠OEB=30°,
    ∴∠BOE=120°,
    ∴S阴影=S扇形OBE﹣S△BOE
    =
    =,
    故答案为.

    【点睛】本题考查了扇形的面积计算、平行四边形的性质,含30度角的直角三角形的性质等,求出扇形OBE的面积和△ABE的面积是解本题的关键.
    12、2
    【解析】解:分别过点A、B作x轴的垂线,垂足分别为D、E.
    则AD∥BE,AD=2BE=,
    ∴B、E分别是AC、DC的中点.
    ∴△ADC∽△BEC,
    ∵BE:AD=1:2,
    ∴EC:CD=1:2,
    ∴EC=DE=a,
    ∴OC=3a,
    又∵A(a, ),B(2a, ),
    ∴S△AOC=AD×CO=×3a× ==1,
    解得:k=2.
    13、k≥-1
    【解析】
    首先讨论当时,方程是一元一次方程,有实数根,当时,利用根的判别式△=b2-4ac=4+4k≥0,两者结合得出答案即可.
    【详解】
    当时,方程是一元一次方程:,方程有实数根;
    当时,方程是一元二次方程,
    解得:且.
    综上所述,关于的方程有实数根,则的取值范围是.
    故答案为
    【点睛】
    考查一元二次方程根的判别式,注意分类讨论思想在解题中的应用,不要忽略
    这种情况.
    14、
    【解析】
    先求出OA的长度,然后利用含30°的直角三角形的性质得到点D的坐标,探索规律,从而得到的坐标即可.
    【详解】
    分别过点 作y轴的垂线交y轴于点,

    ∵点B在上









    同理, 都是含30°的直角三角形
    ∵,


    同理,点 的横坐标为
    纵坐标为
    故点的坐标为
    故答案为:;.
    【点睛】
    本题主要考查含30°的直角三角形的性质,找到点的坐标规律是解题的关键.
    15、
    【解析】
    设出树高,利用所给角的正切值分别表示出两次影子的长,然后作差建立方程即可.
    解:如图所示,

    在RtABC中,tan∠ACB=,∴BC=,
    同理:BD=,
    ∵两次测量的影长相差8米,∴=8,
    ∴x=4,
    故答案为4.
    “点睛”本题考查了平行投影的应用,太阳光线下物体影子的长短不仅与物体有关,而且与时间有关,不同时间随着光线方向的变化,影子的方向也在变化,解此类题,一定要看清方向.解题关键是根据三角函数的几何意义得出各线段的比例关系,从而得出答案.
    16、1
    【解析】
    根据平移规律“左加右减,上加下减”填空.
    【详解】
    解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1.其对称轴为:x=1-m=0,
    解得m=1.
    故答案是:1.
    【点睛】
    主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.
    17、1.
    【解析】
    试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.
    考点:①平行四边形的性质;②圆内接四边形的性质.

    三、解答题(共7小题,满分69分)
    18、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).
    【解析】
    试题分析:利用关于点对称的性质得出的坐标进而得出答案;
    利用关于原点位似图形的性质得出对应点位置进而得出答案.
    试题解析:(1)△A1BC1如图所示.

    (2)△A2B2C2如图所示,点C2的坐标为(-6,4).
    19、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
    【解析】
    (1)根据题意应用分式方程即可;
    (2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
    【详解】
    (1)设型丝绸的进价为元,则型丝绸的进价为元,
    根据题意得:,
    解得,
    经检验,为原方程的解,

    答:一件型、型丝绸的进价分别为500元,400元.
    (2)①根据题意得:

    的取值范围为:,
    ②设销售这批丝绸的利润为,
    根据题意得:



    (Ⅰ)当时,,
    时,
    销售这批丝绸的最大利润;
    (Ⅱ)当时,,
    销售这批丝绸的最大利润;
    (Ⅲ)当时,
    当时,
    销售这批丝绸的最大利润.
    综上所述:.
    【点睛】
    本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
    20、(1)EF∥BD,见解析;(2)①AE=AM,理由见解析;②△AEM能为等边三角形,理由见解析;(3)△ANF的面积不变,理由见解析
    【解析】
    (1)依据DE=BF,DE∥BF,可得到四边形DBFE是平行四边形,进而得出EF∥DB;
    (2)依据已知条件判定△ADE≌△ABM,即可得到AE=AM;②若△AEM是等边三角形,则∠EAM=60°,依据△ADE≌△ABM,可得∠DAE=∠BAM=15°,即可得到DE=16-8,即当DE=16−8时,△AEM是等边三角形;
    (3)设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,依据△DEN∽△BNA,即可得出PN=,根据S△ANF=AF×PN=×(x+8)×=32,可得△ANF的面积不变.
    【详解】
    解:(1)EF∥BD.
    证明:∵动点E从点D出发,在线段DC上运动,同时点F从点B出发,以相同的速度沿射线AB方向运动,
    ∴DE=BF,
    又∵DE∥BF,
    ∴四边形DBFE是平行四边形,
    ∴EF∥DB;
    (2)①AE=AM.
    ∵EF∥BD,
    ∴∠F=∠ABD=45°,
    ∴MB=BF=DE,
    ∵正方形ABCD,
    ∴∠ADC=∠ABC=90°,AB=AD,
    ∴△ADE≌△ABM,
    ∴AE=AM;
    ②△AEM能为等边三角形.
    若△AEM是等边三角形,则∠EAM=60°,
    ∵△ADE≌△ABM,
    ∴∠DAE=∠BAM=15°,
    ∵tan∠DAE=,AD=8,
    ∴2﹣=,
    ∴DE=16﹣8,
    即当DE=16﹣8时,△AEM是等边三角形;
    (3)△ANF的面积不变.
    设DE=x,过点N作NP⊥AB,反向延长PN交CD于点Q,则NQ⊥CD,

    ∵CD∥AB,
    ∴△DEN∽△BNA,
    ∴=,
    ∴,
    ∴PN=,
    ∴S△ANF=AF×PN=×(x+8)×=32,
    即△ANF的面积不变.
    【点睛】
    本题属于四边形综合题,主要考查了平行四边形的判定与性质,等边三角形的性质,全等三角形的判定与性质,解直角三角形以及相似三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造相似三角形,利用全等三角形的 对应边相等,相似三角形的对应边成比例得出结论.
    21、(1)y=﹣x2+2x+1;(2)P(2,1)或(,);(1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0).
    【解析】
    (1)根据抛物线的解析式,可得到它的对称轴方程,进而可根据点B的坐标来确定点A的坐标,已知OC=1OA,即可得到点C的坐标,利用待定系数法即可求得该抛物线的解析式.
    (2)求出点C关于对称轴的对称点,求出两点间的距离与CD相比较可知,PC不可能与CD相等,因此要分两种情况讨论:
    ①CD=PD,根据抛物线的对称性可知,C点关于抛物线对称轴的对称点满足P点的要求,坐标易求得;②PD=PC,可设出点P的坐标,然后表示出PC、PD的长,根据它们的等量关系列式求出点P的坐标.
    (1)此题要分三种情况讨论:①点Q是直角顶点,那么点Q必为抛物线对称轴与x轴的交点,由此求得点Q的坐标;②M、N在x轴上方,且以N为直角顶点时,可设出点N的坐标,根据抛物线的对称性可知MN正好等于抛物线对称轴到N点距离的2倍,而△MNQ是等腰直角三角形,则QN=MN,由此可表示出点N的纵坐标,联立抛物线的解析式,即可得到关于N点横坐标的方程,从而求得点Q的坐标;根据抛物线的对称性知:Q关于抛物线的对称点也符合题意;③M、N在x轴下方,且以N为直角顶点时,方法同②.
    【详解】
    解:(1)由y=ax2﹣2ax+b可得抛物线对称轴为x=1,由B(1,0)可得A(﹣1,0);
    ∵OC=1OA,
    ∴C(0,1);
    依题意有:,
    解得;
    ∴y=﹣x2+2x+1.
    (2)存在.①DC=DP时,由C点(0,1)和x=1可得对称点为P(2,1);
    设P2(x,y),
    ∵C(0,1),P(2,1),
    ∴CP=2,
    ∵D(1,4),
    ∴CD=<2,
    ②由①此时CD⊥PD,
    根据垂线段最短可得,PC不可能与CD相等;
    ②PC=PD时,∵CP22=(1﹣y)2+x2,DP22=(x﹣1)2+(4﹣y)2
    ∴(1﹣y)2+x2=(x﹣1)2+(4﹣y)2
    将y=﹣x2+2x+1代入可得:,
    ∴ ;
    ∴P2(,).
    综上所述,P(2,1)或(,).
    (1)存在,且Q1(1,0),Q2(2﹣,0),Q1(2+,0),Q4(﹣,0),Q5(,0);
    ①若Q是直角顶点,由对称性可直接得Q1(1,0);
    ②若N是直角顶点,且M、N在x轴上方时;
    设Q2(x,0)(x<1),
    ∴MN=2Q1O2=2(1﹣x),
    ∵△Q2MN为等腰直角三角形;
    ∴y=2(1﹣x)即﹣x2+2x+1=2(1﹣x);
    ∵x<1,
    ∴Q2(,0);
    由对称性可得Q1(,0);
    ③若N是直角顶点,且M、N在x轴下方时;
    同理设Q4(x,y),(x<1)
    ∴Q1Q4=1﹣x,而Q4N=2(Q1Q4),
    ∵y为负,
    ∴﹣y=2(1﹣x),
    ∴﹣(﹣x2+2x+1)=2(1﹣x),
    ∵x<1,
    ∴x=﹣,
    ∴Q4(-,0);
    由对称性可得Q5(+2,0).
    【点睛】
    本题考查了二次函数的知识点,解题的关键是熟练的掌握二次函数相关知识点.
    22、(1)见解析;(2)S四边形ADOE =.
    【解析】
    (1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
    (2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
    【详解】
    (1)证明:∵矩形ABCD,
    ∴OA=OB=OC=OD.
    ∵平行四边形ADOE,
    ∴OD∥AE,AE=OD.
    ∴AE=OB.
    ∴四边形AOBE为平行四边形.
    ∵OA=OB,
    ∴四边形AOBE为菱形.
    (2)解:∵菱形AOBE,
    ∴∠EAB=∠BAO.
    ∵矩形ABCD,
    ∴AB∥CD.
    ∴∠BAC=∠ACD,∠ADC=90°.
    ∴∠EAB=∠BAO=∠DCA.
    ∵∠EAO+∠DCO=180°,
    ∴∠DCA=60°.
    ∵DC=2,
    ∴AD=.
    ∴SΔADC=.
    ∴S四边形ADOE =.
    【点睛】
    考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
    23、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
    【解析】
    (1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
    (2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
    ①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
    (3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
    【详解】
    解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
    解得:a=﹣360,b=101,
    故答案为0,﹣360,101;
    (2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
    ∴当x=2时,Wmin=720;
    ②当x≥3时,W=90x2,
    W随x最大而最大,
    当x=3时,Wmin=810>720,
    ∴当距离为2公里时,配套工程费用最少;
    (3)∵0≤x≤3,
    W=mx2﹣360x+101,(m>0),其对称轴x=,
    当x=≤3时,即:m≥60,
    Wmin=m()2﹣360()+101,
    ∵Wmin≤675,解得:60≤m≤1;
    当x=>3时,即m<60,
    当x=3时,Wmin=9m<675,
    解得:0<m<60,
    故:0<m≤1.
    【点睛】
    本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
    24、(1);(1)11.
    【解析】
    (1)根据正切的定义求出OA,证明△BAO∽△BEC,根据相似三角形的性质计算;
    (1)求出直线AB的解析式,解方程组求出点D的坐标,根据三角形CDE的面积=三角形CBE的面积+三角形BED的面积计算即可.
    【详解】
    解:(1)∵tan∠ABO=,OB=4,
    ∴OA=1,
    ∵OE=1,
    ∴BE=6,
    ∵AO∥CE,
    ∴△BAO∽△BEC,
    ∴=,即=,
    解得,CE=3,即点C的坐标为(﹣1,3),
    ∴反比例函数的解析式为:;
    (1)设直线AB的解析式为:y=kx+b,
    则,
    解得,,
    则直线AB的解析式为:,

    解得,,,
    ∴当D的坐标为(6,1),
    ∴三角形CDE的面积=三角形CBE的面积+三角形BED的面积
    =×6×3+×6×1
    =11.

    【点睛】
    此题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、求反比例函数与一次函数的交点的方法是解题的关键.

    相关试卷

    2023-2024学年贵州省黔西南州兴义市鲁屯中学九年级数学第一学期期末教学质量检测模拟试题含答案: 这是一份2023-2024学年贵州省黔西南州兴义市鲁屯中学九年级数学第一学期期末教学质量检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是等内容,欢迎下载使用。

    2023-2024学年贵州省黔西南州兴义市鲁屯中学数学八年级第一学期期末监测模拟试题含答案: 这是一份2023-2024学年贵州省黔西南州兴义市鲁屯中学数学八年级第一学期期末监测模拟试题含答案,共8页。试卷主要包含了下列各式与相等的是,下列因式分解结果正确的是等内容,欢迎下载使用。

    2022-2023学年贵州省黔西南州兴义市鲁屯中学数学七年级第二学期期末质量跟踪监视模拟试题含答案: 这是一份2022-2023学年贵州省黔西南州兴义市鲁屯中学数学七年级第二学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了估计的值在,在平面直角坐标系中,点等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map