![湖北省武汉黄陂区六校联考2022年中考数学模试卷含解析01](http://m.enxinlong.com/img-preview/2/3/13531893/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省武汉黄陂区六校联考2022年中考数学模试卷含解析02](http://m.enxinlong.com/img-preview/2/3/13531893/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![湖北省武汉黄陂区六校联考2022年中考数学模试卷含解析03](http://m.enxinlong.com/img-preview/2/3/13531893/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
湖北省武汉黄陂区六校联考2022年中考数学模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列四个几何体中,主视图是三角形的是( )
A. B. C. D.
2.如图,下列条件不能判定△ADB∽△ABC的是( )
A.∠ABD=∠ACB B.∠ADB=∠ABC
C.AB2=AD•AC D.
3.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A. B. C. D.
4.下列算式中,结果等于a5的是( )
A.a2+a3 B.a2•a3 C.a5÷a D.(a2)3
5.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
6.如图所示:有理数在数轴上的对应点,则下列式子中错误的是( )
A. B. C. D.
7.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为( )
A.75° B.60° C.55° D.45°
8.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是
A.有两个相等的实数根 B.有两个异号的实数根
C.有两个不相等的实数根 D.没有实数根
9.下列方程中有实数解的是( )
A.x4+16=0 B.x2﹣x+1=0
C. D.
10.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
11.如图,在正方形网格中建立平面直角坐标系,若,,则点C的坐标为( )
A. B. C. D.
12.一、单选题
如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.计算:
(1)()2=_____;
(2) =_____.
14.在实数﹣2、0、﹣1、2、中,最小的是_______.
15.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.
16.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.
17.如图,数轴上不同三点对应的数分别为,其中,则点表示的数是__________.
18.如图,点A在双曲线上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD.过点D作DE⊥AC,垂足为点E.求证:DE是⊙O的切线;当⊙O半径为3,CE=2时,求BD长.
20.(6分)在中,,以为直径的圆交于,交于.过点的切线交的延长线于.求证:是的切线.
21.(6分)计算:+2〡6tan30
22.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.
23.(8分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.
(1)求桥DC与直线AB的距离;
(2)现在从A地到达B地可比原来少走多少路程?
(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)
24.(10分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.
25.(10分)在△ABC中,∠A,∠B都是锐角,且sinA=,tanB=,AB=10,求△ABC的面积.
26.(12分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.
27.(12分)解不等式组.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
【详解】
解:主视图是三角形的一定是一个锥体,只有D是锥体.
故选D.
【点睛】
此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
2、D
【解析】
根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.
【详解】
解:A、∵∠ABD=∠ACB,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
B、∵∠ADB=∠ABC,∠A=∠A,
∴△ABC∽△ADB,故此选项不合题意;
C、∵AB2=AD•AC,
∴,∠A=∠A,△ABC∽△ADB,故此选项不合题意;
D、=不能判定△ADB∽△ABC,故此选项符合题意.
故选D.
【点睛】
点评:本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.
3、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
4、B
【解析】
试题解析:A、a2与a3不能合并,所以A选项错误;
B、原式=a5,所以B选项正确;
C、原式=a4,所以C选项错误;
D、原式=a6,所以D选项错误.
故选B.
5、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
6、C
【解析】
从数轴上可以看出a、b都是负数,且a<b,由此逐项分析得出结论即可.
【详解】
由数轴可知:a<b<0,A、两数相乘,同号得正,ab>0是正确的;
B、同号相加,取相同的符号,a+b<0是正确的;
C、a<b<0,,故选项是错误的;
D、a-b=a+(-b)取a的符号,a-b<0是正确的.
故选:C.
【点睛】
此题考查有理数的混合运算,数轴,解题关键在于结合数轴进行解答.
7、B
【解析】
由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.
【详解】
解:∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD,∠BAF=45°,
∵△ADE是等边三角形,
∴∠DAE=60°,AD=AE,
∴∠BAE=90°+60°=150°,AB=AE,
∴∠ABE=∠AEB=(180°﹣150°)=15°,
∴∠BFC=∠BAF+∠ABE=45°+15°=60°;
故选:B.
【点睛】
本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.
8、A
【解析】
根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.
【详解】
∵函数的顶点的纵坐标为4,
∴直线y=4与抛物线只有一个交点,
∴方程ax2+bx+c﹣4=0有两个相等的实数根,
故选A.
【点睛】
本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.
9、C
【解析】
A、B是一元二次方程可以根据其判别式判断其根的情况;C是无理方程,容易看出没有实数根;D是分式方程,能使得分子为零,分母不为零的就是方程的根.
【详解】
A.中△=02﹣4×1×16=﹣64<0,方程无实数根;
B.中△=(﹣1)2﹣4×1×1=﹣3<0,方程无实数根;
C.x=﹣1是方程的根;
D.当x=1时,分母x2-1=0,无实数根.
故选:C.
【点睛】
本题考查了方程解得定义,能使方程左右两边相等的未知数的值叫做方程的解.解答本题的关键是针对不同的方程进行分类讨论.
10、D
【解析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
11、C
【解析】
根据A点坐标即可建立平面直角坐标.
【详解】
解:由A(0,2),B(1,1)可知原点的位置,
建立平面直角坐标系,如图,
∴C(2,-1)
故选:C.
【点睛】
本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型.
12、D
【解析】
试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.
考点:简单几何体的三视图.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
(1)直接利用分式乘方运算法则计算得出答案;
(2)直接利用分式除法运算法则计算得出答案.
【详解】
(1)()2=;
故答案为;
(2) ==.
故答案为.
【点睛】
此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.
14、﹣1.
【解析】
解:在实数﹣1、0、﹣1、1、中,最小的是﹣1,
故答案为﹣1.
【点睛】
本题考查实数大小比较.
15、
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.
【详解】
解:1.111121=2.1×11-2.
故答案为:2.1×11-2.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.
16、x(x﹣2)(x﹣1)2
【解析】
先整理出公因式(x2-2x),提取公因式后再对余下的多项式整理,利用提公因式法分解因式和完全平方公式法继续进行因式分解.
【详解】
解:(x2−2x)2−(2x−x2) =(x2−2x)2+(x2−2x) =(x2−2x)(x2−2x+1) =x(x−2)(x−1)2
故答案为x(x﹣2)(x﹣1)2
【点睛】
此题考查了因式分解-提公因式法和公式法,熟练掌握这两种方法是解题的关键.
17、1
【解析】
根据两点间的距离公式可求B点坐标,再根据绝对值的性质即可求解.
【详解】
∵数轴上不同三点A、B、C对应的数分别为a、b、c,a=-4,AB=3,
∴b=3+(-4)=-1,
∵|b|=|c|,
∴c=1.
故答案为1.
【点睛】
考查了实数与数轴,绝对值,关键是根据两点间的距离公式求得B点坐标.
18、-4
【解析】
:由反比例函数解析式可知:系数,
∵S△AOB=2即,∴;
又由双曲线在二、四象限k<0,∴k=-4
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)BD=2.
【解析】
(1)连接OD,AB为⊙0的直径得∠ADB=90°,由AB=AC,根据等腰三角形性质得AD平分BC,即DB=DC,则OD为△ABC的中位线,所以OD∥AC,而DE⊥AC,则OD⊥DE,然后根据切线的判定方法即可得到结论;
(2)由∠B=∠C,∠CED=∠BDA=90°,得出△DEC∽△ADB,得出,从而求得BD•CD=AB•CE,由BD=CD,即可求得BD2=AB•CE,然后代入数据即可得到结果.
【详解】
(1)证明:连接OD,如图,
∵AB为⊙0的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD平分BC,即DB=DC,
∵OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥DE,
∴DE是⊙0的切线;
(2)∵∠B=∠C,∠CED=∠BDA=90°,
∴△DEC∽△ADB,
∴,
∴BD•CD=AB•CE,
∵BD=CD,
∴BD2=AB•CE,
∵⊙O半径为3,CE=2,
∴BD==2.
【点睛】
本题考查了切线的判定定理:过半径的外端点且与半径垂直的直线为圆的切线.也考查了等腰三角形的性质、三角形相似的判定和性质.
20、证明见解析.
【解析】
连接OE,由OB=OD和AB=AC可得,则OF∥AC,可得,由圆周角定理和等量代换可得,由SAS证得,从而得到,即可证得结论.
【详解】
证明:如图,连接,
∵,
∴,
∵,
∴,
∴,
∴,
∴
∵
∴,则,
∴,
∴,即,
在和中,
∵,
∴,
∴
∵是的切线,则,
∴,
∴,则,
∴是的切线.
【点睛】
本题主要考查了等腰三角形的性质、切线的性质和判定、圆周角定理和全等三角形的判定与性质,熟练掌握圆周角定理和全等三角形的判定与性质是解题的关键.
21、10
【解析】
根据实数的性质进行化简即可计算.
【详解】
原式=9-1+2-+6×
=10-
=10
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
22、.
【解析】
先计算括号里面的,再利用除法化简原式,
【详解】
,
= ,
= ,
=,
=,
由a2+a﹣6=0,得a=﹣3或a=2,
∵a﹣2≠0,
∴a≠2,
∴a=﹣3,
当a=﹣3时,原式=.
【点睛】
本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.
23、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.
【解析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD, CB的长,进而求出现在从A地到达B地可比原来少走的路程.
【详解】
解:(1)作CH⊥AB于点H,如图所示,
∵BC=12km,∠B=30°,
∴km,BH=km,
即桥DC与直线AB的距离是6.0km;
(2)作DM⊥AB于点M,如图所示,
∵桥DC和AB平行,CH=6km,
∴DM=CH=6km,
∵∠DMA=90°,∠B=45°,MH=EF=DC,
∴AD=km,AM=DM=6km,
∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,
即现在从A地到达B地可比原来少走的路程是4.1km.
【点睛】
做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.
24、(1)见解析;(2)见解析
【解析】
(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.
(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.
【详解】
解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.
又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.
∴四边形BCFE是平行四边形.
又∵BE=FE,∴四边形BCFE是菱形.
(2)∵∠BCF=120°,∴∠EBC=60°.
∴△EBC是等边三角形.
∴菱形的边长为4,高为.
∴菱形的面积为4×=.
25、
【解析】
根据已知得该三角形为直角三角形,利用三角函数公式求出各边的值,再利用三角形的面积公式求解.
【详解】
如图:
由已知可得:∠A=30°,∠B=60°,
∴△ABC为直角三角形,且∠C=90°,AB=10,
∴BC=AB·sin30°=10=5,
AC=AB·cos30°=10=,
∴S△ABC=.
【点睛】
本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
26、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.
【解析】
(1)根据题意应用分式方程即可;
(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.
【详解】
(1)设型丝绸的进价为元,则型丝绸的进价为元,
根据题意得:,
解得,
经检验,为原方程的解,
,
答:一件型、型丝绸的进价分别为500元,400元.
(2)①根据题意得:
,
的取值范围为:,
②设销售这批丝绸的利润为,
根据题意得:
,
,
(Ⅰ)当时,,
时,
销售这批丝绸的最大利润;
(Ⅱ)当时,,
销售这批丝绸的最大利润;
(Ⅲ)当时,
当时,
销售这批丝绸的最大利润.
综上所述:.
【点睛】
本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.
27、x<﹣1.
【解析】
分析:
按照解一元一次不等式组的一般步骤解答即可.
详解:
,
由①得x≤1,
由②得x<﹣1,
∴原不等式组的解集是x<﹣1.
点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.
湖北省武汉黄陂区六校联考2023-2024学年数学九上期末监测试题含答案: 这是一份湖北省武汉黄陂区六校联考2023-2024学年数学九上期末监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
武汉新洲区六校联考2022年中考数学四模试卷含解析: 这是一份武汉新洲区六校联考2022年中考数学四模试卷含解析,共16页。试卷主要包含了计算等内容,欢迎下载使用。
湖北省武汉市黄陂区部分学校2022年十校联考最后数学试题含解析: 这是一份湖北省武汉市黄陂区部分学校2022年十校联考最后数学试题含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,4的平方根是等内容,欢迎下载使用。