|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析01
    2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析02
    2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析

    展开
    这是一份2021-2022学年湖北省武汉东湖高新区六校联考中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了一元一次不等式2,今年春节某一天早7等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是(  )
    A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
    2.已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于( )

    A.12πcm2
    B.15πcm2
    C.24πcm2
    D.30πcm2
    3.实数﹣5.22的绝对值是(  )
    A.5.22 B.﹣5.22 C.±5.22 D.
    4.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    5.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    6.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
    A. B.
    C. D.
    7.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    8.下列图形中,可以看作中心对称图形的是( )
    A. B. C. D.
    9.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为(  )
    A. B. C. D.
    10.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.

    12.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F,,DE=6,则EF= .

    13.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.

    14.不等式组的最小整数解是_____.
    15.有一组数据:3,5,5,6,7,这组数据的众数为_____.
    16.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.

    17.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    三、解答题(共7小题,满分69分)
    18.(10分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.
    (1)如图,点D在线段CB上时,
    ①求证:△AEF≌△ADC;
    ②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;
    (2)当∠DAB=15°时,求△ADE的面积.

    19.(5分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边 AB 上的高 CD.如图①,以等边三角形 ABC 的边 AB 为直径的圆,与另两边 BC、AC 分别交于点 E、F.如图②,以钝角三角形 ABC 的一短边 AB 为直径的圆,与最长的边 AC 相交于点 E.

    20.(8分)如图1,在四边形ABCD中,AB=AD.∠B+∠ADC=180°,点E,F分别在四边形ABCD的边BC,CD上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系.

    图1 图2 图3
    (1)思路梳理
    将△ABE绕点A逆时针旋转至△ADG,使AB与AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即点F,D,G三点共线. 易证△AFG ,故EF,BE,DF之间的数量关系为 ;
    (2)类比引申
    如图2,在图1的条件下,若点E,F由原来的位置分别变到四边形ABCD的边CB,DC的延长线上,∠EAF=∠BAD,连接EF,试猜想EF,BE,DF之间的数量关系,并给出证明.
    (3)联想拓展
    如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°. 若BD=1,EC=2,则DE的长为 .
    21.(10分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.
    (1)若点A′落在矩形的对角线OB上时,OA′的长=   ;
    (2)若点A′落在边AB的垂直平分线上时,求点D的坐标;
    (3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).

    22.(10分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
    ①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
    ②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
    23.(12分)计算:÷(﹣1)
    24.(14分)如图,矩形ABCD中,点E为BC上一点,DF⊥AE于点F,求证:∠AEB=∠CDF.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
    【详解】
    A、数据中5出现2次,所以众数为5,此选项正确;
    B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
    C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
    D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
    故选:D.
    【点睛】
    本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
    2、B
    【解析】
    由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.
    3、A
    【解析】
    根据绝对值的性质进行解答即可.
    【详解】
    实数﹣5.1的绝对值是5.1.
    故选A.
    【点睛】
    本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键.
    4、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    5、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    6、C
    【解析】
    本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
    【详解】
    解:原计划用时为:,实际用时为:.
    所列方程为:,
    故选C.
    【点睛】
    本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
    7、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    8、B
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A、不是中心对称图形,故此选项错误;
    B、是中心对称图形,故此选项正确;
    C、不是中心对称图形,故此选项错误;
    D、不是中心对称图形,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    9、B
    【解析】
    按照解一元一次不等式的步骤求解即可.
    【详解】
    去括号,得2+2x>1+3x;移项合并同类项,得x<1,所以选B.
    【点睛】
    数形结合思想是初中常用的方法之一.
    10、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3
    【解析】
    连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.
    【详解】
    如图,连接OA.

    由题意,可得OB=OC,
    ∴S△OAB=S△OAC=S△ABC=2.
    设直线y=x+2与y轴交于点D,则D(0,2),
    设A(a,a+2),B(b,b+2),则C(-b,-b-2),
    ∴S△OAB=×2×(a-b)=2,
    ∴a-b=2  ①.
    过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,
    则S△OAM=S△OCN=k,
    ∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,
    ∴(-b-2+a+2)(-b-a)=2,
    将①代入,得
    ∴-a-b=2  ②,
    ①+②,得-2b=6,b=-3,
    ①-②,得2a=2,a=1,
    ∴A(1,3),
    ∴k=1×3=3.
    故答案为3.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.
    12、1.
    【解析】
    试题分析:∵AD∥BE∥CF,∴,即,∴EF=1.故答案为1.
    考点:平行线分线段成比例.
    13、40
    【解析】
    首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
    【详解】
    解:在Rt△PAB中,∵∠APB=30°,
    ∴PB=2AB,
    由题意BC=2AB,
    ∴PB=BC,
    ∴∠C=∠CPB,
    ∵∠ABP=∠C+∠CPB=60°,
    ∴∠C=30°,
    ∴PC=2PA,
    ∵PA=AB•tan60°,
    ∴PC=2×20×=40(km),
    故答案为40.
    【点睛】
    本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
    14、-1
    【解析】
    分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.
    详解: .
    ∵解不等式①得:x>-3,
    解不等式②得:x≤1,
    ∴不等式组的解集为-3<x≤1,
    ∴不等式组的最小整数解是-1,
    故答案为:-1.
    点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.
    15、1
    【解析】
    根据众数的概念进行求解即可得.
    【详解】
    在数据3,1,1,6,7中1出现次数最多,
    所以这组数据的众数为1,
    故答案为:1.
    【点睛】
    本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.
    16、(,1)或(﹣,1)
    【解析】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
    【详解】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
    当y=1时, x1-1=1,解得x=±
    当y=-1时, x1-1=-1,方程无解
    故P点的坐标为()或(-)
    【点睛】
    此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.
    17、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.

    三、解答题(共7小题,满分69分)
    18、(1)①证明见解析;②25;(2)为或50+1.
    【解析】
    (1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.
    【详解】
    (1)、①证明:在Rt△ABC中,
    ∵∠B=30°,AB=10,
    ∴∠CAB=60°,AC=AB=5,
    ∵点F是AB的中点, 
    ∴AF=AB=5,
    ∴AC=AF,
    ∵△ADE是等边三角形,
    ∴AD=AE,∠EAD=60°,
    ∵∠CAB=∠EAD,
    即∠CAD+∠DAB=∠FAE+∠DAB,
    ∴∠CAD=∠FAE,
    ∴△AEF≌△ADC(SAS);
    ②∵△AEF≌△ADC,
    ∴∠AEF=∠C=90°,EF=CD=x,
    又∵点F是AB的中点,
    ∴AE=BE=y, 
    在Rt△AEF中,勾股定理可得:y2=25+x2,
     ∴y2﹣x2=25.

    (2)①当点在线段CB上时, 由∠DAB=15°,可得∠CAD=45°,△ADC是等腰直角三角形,
    ∴AD2=50,△ADE的面积为;
    ②当点在线段CB的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,

    ∴在Rt△ACD中,勾股定理可得AD2=200+100,
    综上所述,△ADE的面积为或.
    【点睛】
    此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键.
    19、(1)详见解析;(2)详见解析.
    【解析】
    (1)连接AE、BF,找到△ABC的高线的交点,据此可得CD;
    (2)延长CB交圆于点F,延长AF、EB交于点G,连接CG,延长AB交CG于点D,据此可得.
    【详解】
    (1)如图所示,CD 即为所求;

    (2)如图,CD 即为所求.
    【点睛】
    本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质.
    20、(1)△AFE. EF=BE+DF.(2)BF=DF-BE,理由见解析;(3)
    【解析】
    试题分析:(1)先根据旋转得:计算 即点共线,再根据SAS证明△AFE≌△AFG,得EF=FG,可得结论EF=DF+DG=DF+AE;
    (2)如图2,同理作辅助线:把△ABE绕点A逆时针旋转至△ADG,证明△EAF≌△GAF,得EF=FG,所以EF=DF−DG=DF−BE;
    (3)如图3,同理作辅助线:把△ABD绕点A逆时针旋转至△ACG,证明△AED≌△AEG,得,先由勾股定理求的长,从而得结论.
    试题解析:(1)思路梳理:
    如图1,把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,即AB=AD,
    由旋转得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,
    ∴∠FDG=∠ADF+∠ADG=+=,
    即点F. D. G共线,
    ∵四边形ABCD为矩形,
    ∴∠BAD=,
    ∵∠EAF=,



    在△AFE和△AFG中,

    ∴△AFE≌△AFG(SAS),
    ∴EF=FG,
    ∴EF=DF+DG=DF+AE;
    故答案为:△AFE,EF=DF+AE;
    (2)类比引申:

    如图2,EF=DF−BE,理由是:
    把△ABE绕点A逆时针旋转至△ADG,可使AB与AD重合,则G在DC上,
    由旋转得:BE=DG,∠DAG=∠BAE,AE=AG,
    ∵∠BAD=,
    ∴∠BAE+∠BAG=,
    ∵∠EAF=,
    ∴∠FAG=−=,
    ∴∠EAF=∠FAG=,
    在△EAF和△GAF中,

    ∴△EAF≌△GAF(SAS),
    ∴EF=FG,
    ∴EF=DF−DG=DF−BE;
    (3)联想拓展:
    如图3,把△ABD绕点A逆时针旋转至△ACG,可使AB与AC重合,连接EG,

    由旋转得:AD=AG,∠BAD=∠CAG,BD=CG,
    ∵∠BAC=,AB=AC,
    ∴∠B=∠ACB=,
    ∴∠ACG=∠B=,
    ∴∠BCG=∠ACB+∠ACG=+=,
    ∵EC=2,CG=BD=1,
    由勾股定理得:
    ∵∠BAD=∠CAG,∠BAC=,
    ∴∠DAG=,
    ∵∠BAD+∠EAC=,
    ∴∠CAG+∠EAC==∠EAG,
    ∴∠DAE=,
    ∴∠DAE=∠EAG=,
    ∵AE=AE,
    ∴△AED≌△AEG,

    21、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
    【解析】
    分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;
    (Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;
    (Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.
    详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.
    故答案为1;

    (Ⅱ)如图2,连接AA′.
    ∵点A′落在线段AB的中垂线上,∴BA=AA′.
    ∵△BDA′是由△BDA折叠得到的,
    ∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,
    ∴AB=A′B=AA′,∴△BAA′是等边三角形,
    ∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,
    ∴AD=ABtan∠ABD=1tan30°=2,
    ∴OD=OA﹣AD=8﹣2,
    ∴点D(8﹣2,0);

    (Ⅲ)①如图3,当点D在OA上时.
    由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
    ∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,
    ∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,
    由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,
    则=,即=,
    解得:DN=3﹣5,
    则OD=ON+DN=4+3﹣5=3﹣1,
    ∴D(3﹣1,0);

    ②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
    ∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,
    则MC=BN==2,∴MO=MC+OC=2+1,
    由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,
    则=,即=,
    解得:ME=,则OE=MO﹣ME=1+.
    ∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,
    ∴△DOE∽△A′ME,
    ∴=,即=,
    解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).
    综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).

    点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.
    22、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
    【解析】
    【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
    (2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
    ②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
    【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
    根据题意可得,解得,
    答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
    (2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
    根据题意可得 ,解得75<m≤78,
    ∵m为整数,
    ∴m的值为76、77、78,
    ∴进货方案有3种,分别为:
    方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
    方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
    方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
    ②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
    ∵5>0,
    ∴W随m的增大而增大,且75<m≤78,
    ∴当m=78时,W最大,W最大值为1390,
    答:当m=78时,所获利润最大,最大利润为1390元.
    【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
    23、
    【解析】
    根据分式的混合运算法则把原式进行化简即可.
    【详解】
    原式=÷(﹣)

    =•
    =.
    【点睛】
    本题考查的是分式的混合运算,熟知分式的混合运算的法则是解答此题的关键.
    24、见解析.
    【解析】
    利用矩形的性质结合平行线的性质得出∠CDF+∠ADF=90°,进而得出∠CDF=∠DAF,由AD∥BC,得出答案.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,AD∥BC,
    ∴∠CDF+∠ADF=90°,
    ∵DF⊥AE于点F,
    ∴∠DAF+∠ADF=90°,
    ∴∠CDF=∠DAF.
    ∵AD∥BC,
    ∴∠DAF=∠AEB,
    ∴∠AEB=∠CDF.
    【点睛】
    此题主要考查了矩形的性质以及平行线的性质,正确得出∠CDF=∠DAF是解题关键.

    相关试卷

    湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案: 这是一份湖北省武汉东湖高新区六校联考2023-2024学年数学九上期末统考模拟试题含答案,共8页。试卷主要包含了下列事件中是必然事件的是等内容,欢迎下载使用。

    湖北省鄂州鄂城区七校联考2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省鄂州鄂城区七校联考2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,四根长度分别为3,4,6,,实数的倒数是等内容,欢迎下载使用。

    湖北省武汉市2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份湖北省武汉市2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map