湖北省天门市多宝镇第二中学2022年中考数学适应性模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( )
A.a3﹣a2=a B.a2•a3=a6
C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a6
2.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
3.如果向北走6km记作+6km,那么向南走8km记作( )
A.+8km B.﹣8km C.+14km D.﹣2km
4.如下图所示,该几何体的俯视图是 ( )
A. B. C. D.
5.tan45º的值为( )
A. B.1 C. D.
6.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B.7 C.﹣9 D.﹣7
7.若△ABC与△DEF相似,相似比为2:3,则这两个三角形的面积比为( )
A.2:3 B.3:2 C.4:9 D.9:4
8.下列运算正确的是( )
A.a3•a2=a6 B.(2a)3=6a3
C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a2
9.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为( )
A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
10.已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为( )
A. B. C. D.
11.估计﹣1的值为( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
12.已知二次函数的图象与轴交于点、,且,与轴的正半轴的交点在的下方.下列结论:①;②;③;④.其中正确结论的个数是( )个.
A.4个 B.3个 C.2个 D.1个
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图甲,对于平面上不大于90°的∠MON,我们给出如下定义:如果点P在∠MON的内部,作PE⊥OM,PF⊥ON,垂足分别为点E、F,那么称PE+PF的值为点P相对于∠MON的“点角距离”,记为d(P,∠MON).如图乙,在平面直角坐标系xOy中,点P在坐标平面内,且点P的横坐标比纵坐标大2,对于∠xOy,满足d(P,∠xOy)=10,点P的坐标是_____.
14.出售某种手工艺品,若每个获利x元,一天可售出个,则当x=_________元,一天出售该种手工艺品的总利润y最大.
15.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,摸出两个颜色相同的小球的概率为____.
16.双曲线、在第一象限的图像如图,过y2上的任意一点A,作x
轴的平行线交y1于B,交y轴于C,过A作x轴的垂线交y1于D,交x轴于E,连结BD、CE,则=
.
17.将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数表达式为_____.
18.已知图中的两个三角形全等,则∠1等于____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).
20.(6分)观察下列等式:
22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
…第④个等式为 ;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.
21.(6分)我校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.
组别
正确数字x
人数
A
0≤x<8
10
B
8≤x<16
15
C
16≤x<24
25
D
24≤x<32
m
E
32≤x<40
n
根据以上信息解决下列问题:
(1)在统计表中,m= ,n= ,并补全条形统计图.
(2)扇形统计图中“C组”所对应的圆心角的度数是 .
(3)有三位评委老师,每位老师在E组学生完成学校比赛后,出示“通过”或“淘汰”或“待定”的评定结果.学校规定:每位学生至少获得两位评委老师的“通过”才能代表学校参加鄂州市“汉字听写”比赛,请用树形图求出E组学生王云参加鄂州市“汉字听写”比赛的概率.
22.(8分)如图,在航线l的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).
(参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
23.(8分)如图1,已知直线y=kx与抛物线y=交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?
24.(10分)中华文明,源远流长;中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
频数
频率
50≤x<60
10
0.05
60≤x<70
30
0.15
70≤x<80
40
n
80≤x<90
m
0.35
90≤x≤100
50
0.25
请根据所给信息,解答下列问题:m= ,n= ;请补全频数分布直方图;若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?
25.(10分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈,tan37°≈)
26.(12分)如图,已知直线AB与轴交于点C,与双曲线交于A(3,)、B(-5,)两点.AD⊥轴于点D,BE∥轴且与轴交于点E.求点B的坐标及直线AB的解析式;判断四边形CBED的形状,并说明理由.
27.(12分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
各项计算得到结果,即可作出判断.
解:A、原式不能合并,不符合题意;
B、原式=a5,不符合题意;
C、原式=a2﹣2ab+b2,不符合题意;
D、原式=﹣a6,符合题意,
故选D
2、C
【解析】
试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.
考点:有理数大小比较.
3、B
【解析】
正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来
【详解】
解:向北和向南互为相反意义的量.
若向北走6km记作+6km,
那么向南走8km记作﹣8km.
故选:B.
【点睛】
本题考查正负数在生活中的应用.注意用正负数表示的量必须是具有相反意义的量.
4、B
【解析】
根据俯视图是从上面看到的图形解答即可.
【详解】
从上面看是三个长方形,故B是该几何体的俯视图.
故选B.
【点睛】
本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
5、B
【解析】
解:根据特殊角的三角函数值可得tan45º=1,
故选B.
【点睛】
本题考查特殊角的三角函数值.
6、C
【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.
【详解】
∵当x=7时,y=6-7=-1,
∴当x=4时,y=2×4+b=-1,
解得:b=-9,
故选C.
【点睛】
本题主要考查函数值,解题的关键是掌握函数值的计算方法.
7、C
【解析】
由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.
【详解】
∵△ABC与△DEF相似,相似比为2:3,
∴这两个三角形的面积比为4:1.
故选C.
【点睛】
此题考查了相似三角形的性质.注意相似三角形的面积比等于相似比的平方.
8、D
【解析】
试题分析:根据同底数幂相乘,底数不变指数相加求解求解;
根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;
根据完全平方公式求解;
根据合并同类项法则求解.
解:A、a3•a2=a3+2=a5,故A错误;
B、(2a)3=8a3,故B错误;
C、(a﹣b)2=a2﹣2ab+b2,故C错误;
D、3a2﹣a2=2a2,故D正确.
故选D.
点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键.
9、C
【解析】
科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
【详解】
830万=8300000=8.3×106.
故选C
【点睛】
本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.
10、B
【解析】
∵①对顶角相等,故此选项正确;
②若a>b>0,则<,故此选项正确;
③对角线相等且互相垂直平分的四边形是正方形,故此选项错误;
④抛物线y=x2﹣2x与坐标轴有2个不同交点,故此选项错误;
⑤边长相等的多边形内角不一定都相等,故此选项错误;
∴从中任选一个命题是真命题的概率为:.
故选:B.
11、C
【解析】
分析:根据被开方数越大算术平方根越大,可得答案.
详解:∵<<,∴1<<5,∴3<﹣1<1.
故选C.
点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出1<<5是解题的关键,又利用了不等式的性质.
12、B
【解析】
分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据不等式的两边都乘以a(a<0)得:c>−2a,由4a−2b+c=0得而0
详解:根据二次函数y=ax2+bx+c的图象与x轴交于点(−2,0)、(x1,0),且1
把x=−2代入得:4a−2b+c=0,∴①正确;
把x=−1代入得:y=a−b+c>0,如图A点,∴②错误;
∵(−2,0)、(x1,0),且1
∴不等式的两边都乘以a(a<0)得:c>−2a,
∴2a+c>0,∴③正确;
④由4a−2b+c=0得
而0
∴2a−b+1>0,
∴④正确.
所以①③④三项正确.
故选B.
点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与轴的交点,属于常考题型.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、(6,4)或(﹣4,﹣6)
【解析】
设点P的横坐标为x,表示出纵坐标,然后列方程求出x,再求解即可.
【详解】
解:设点P的横坐标为x,则点P的纵坐标为x-2,由题意得,
当点P在第一象限时,x+x-2=10,
解得x=6,
∴x-2=4,
∴P(6,4);
当点P在第三象限时,-x-x+2=10,
解得x=-4,
∴x-2=-6,
∴P(-4,-6).
故答案为:(6,4)或(-4,-6).
【点睛】
本题主要考查了点的坐标,读懂题目信息,理解“点角距离”的定义并列出方程是解题的关键.
14、1
【解析】先根据题意得出总利润y与x的函数关系式,再根据二次函数的最值问题进行解答.
解:∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,
∴y=(8-x)x,即y=-x2+8x,
∴当x=- =1时,y取得最大值.
故答案为:1.
15、
【解析】
解:根据题意可得:列表如下
红1
红2
黄1
黄2
黄3
红1
红1,红2
红1,黄1
红1,黄2
红1,黄3
红2
红2,红1
红2,黄1
红2,黄2
红2,黄3
黄1
黄1,红1
黄1,红2
黄1,黄2
黄1,黄3
黄2
黄2,红1
黄2,红2
黄2,黄1
黄2,黄3
黄3
黄3,红1
黄3,红2
黄3,黄1
黄3,黄2
共有20种所有等可能的结果,其中两个颜色相同的有8种情况,
故摸出两个颜色相同的小球的概率为.
【点睛】
本题考查列表法和树状图法,掌握步骤正确列表是解题关键.
16、
【解析】
设A点的横坐标为a,把x=a代入得,则点A的坐标为(a,).
∵AC⊥y轴,AE⊥x轴,
∴C点坐标为(0,),B点的纵坐标为,E点坐标为(a,0),D点的横坐标为a.
∵B点、D点在上,∴当y=时,x=;当x=a,y=.
∴B点坐标为(,),D点坐标为(a,).
∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.
又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.
17、y=2x+1
【解析】
分析:直接根据函数图象平移的法则进行解答即可.
详解:将一次函数y=2x+4的图象向下平移3个单位长度,相应的函数是y=2x+4-3=2x+1;
故答案为y=2x+1.
点睛:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.
18、58°
【解析】
如图,∠2=180°−50°−72°=58°,
∵两个三角形全等,
∴∠1=∠2=58°.
故答案为58°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(6+)米
【解析】
根据已知的边和角,设CQ=x,BC=QC=x,PC=BC=3x,根据PQ=BQ列出方程求解即可.
【详解】
解:延长PQ交地面与点C,
由题意可得:AB=6m,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x,则在Rt△BQC中,BC=QC=x,∴在Rt△PBC中PC=BC=3x,∵在Rt△PAC中,∠PAC=45°,则PC=AC,∴,3x=6+x,解得x==3+,∴PQ=PC-CQ=3x-x=2x=6+,则电线杆PQ高为(6+)米.
【点睛】
此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.
20、(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.
【解析】
(1)根据①②③的规律即可得出第④个等式;
(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.
【详解】
(1)∵22﹣2×1=12+1①
32﹣2×2=22+1②
42﹣2×3=32+1③
∴第④个等式为52﹣2×4=42+1,
故答案为:52﹣2×4=42+1,
(2)第n个等式为(n+1)2﹣2n=n2+1.
(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.
【点睛】
本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.
21、(1)m=30, n=20,图详见解析;(2)90°;(3).
【解析】
分析:(1)、根据B的人数和百分比得出总人数,从而根据总人数分别求出m和n的值;(2)、根据C的人数和总人数的比值得出扇形的圆心角度数;(3)、首先根据题意画出树状图,然后根据概率的计算法则得出答案.
详解:(1)∵总人数为15÷15%=100(人),
∴D组人数m=100×30%=30,E组人数n=100×20%=20,
补全条形图如下:
(2)扇形统计图中“C组”所对应的圆心角的度数是360°×=90°,
(3)记通过为A、淘汰为B、待定为C,
画树状图如下:
由树状图可知,共有27种等可能结果,其中获得两位评委老师的“通过”有7种情况,
∴E组学生王云参加鄂州市“汉字听写”比赛的概率为.
点睛:本题主要考查的就是扇形统计图、条形统计图以及概率的计算法则,属于基础题型.解决这个问题,我们一定要明白样本容量=频数÷频率,根据这个公式即可进行求解.
22、(1)观测点到航线的距离为3km(2)该轮船航行的速度约为40.6km/h
【解析】试题分析:(1)设AB与l交于点O,利用∠DAO=60°,利用∠DAO的余弦求出OA长,从而求得OB长,继而求得BE长即可;
(2)先计算出DE=EF+DF=求出DE=5,再由进而由tan∠CBE=求出EC,即可求出CD的长,进而求出航行速度.
试题解析:(1)设AB与l交于点O,
在Rt△AOD中,
∵∠OAD=60°,AD=2(km),
∴OA==4(km),
∵AB=10(km),
∴OB=AB﹣OA=6(km),
在Rt△BOE中,∠OBE=∠OAD=60°,
∴BE=OB•cos60°=3(km),
答:观测点B到航线l的距离为3km;
(2)∵∠OAD=60°,AD=2(km),∴OD=AD·tan60°=2 ,
∵∠BEO=90°,BO=6,BE=3,∴OE==3,
∴DE=OD+OE=5(km);
CE=BE•tan∠CBE=3tan76°,
∴CD=CE﹣DE=3tan76°﹣5≈3.38(km),
∵5(min)= (h),∴v==12CD=12×3.38≈40.6(km/h),
答:该轮船航行的速度约为40.6km/h.
【点睛】本题主要考查了方向角问题以及利用锐角三角函数关系得出EC,DE,DO的长是解题关键.
23、(1)y=2x,OA=,
(2)是一个定值,,
(3)当时,E点只有1个,当时,E点有2个。
【解析】(1)把点A(3,6)代入y=kx 得;
∵6=3k,
∴k=2,
∴y=2x.
OA=.
(2)是一个定值,理由如下:
如答图1,过点Q作QG⊥y轴于点G,QH⊥x轴于点H.
①当QH与QM重合时,显然QG与QN重合,
此时;
②当QH与QM不重合时,
∵QN⊥QM,QG⊥QH
不妨设点H,G分别在x、y轴的正半轴上,
∴∠MQH=∠GQN,
又∵∠QHM=∠QGN=90°
∴△QHM∽△QGN…(5分),
∴,
当点P、Q在抛物线和直线上不同位置时,同理可得.①①
如答图2,延长AB交x轴于点F,过点F作FC⊥OA于点C,过点A作AR⊥x轴于点R
∵∠AOD=∠BAE,
∴AF=OF,
∴OC=AC=OA=
∵∠ARO=∠FCO=90°,∠AOR=∠FOC,
∴△AOR∽△FOC,
∴,
∴OF=,
∴点F(,0),
设点B(x,),
过点B作BK⊥AR于点K,则△AKB∽△ARF,
∴,
即,
解得x1=6,x2=3(舍去),
∴点B(6,2),
∴BK=6﹣3=3,AK=6﹣2=4,
∴AB=5
(求AB也可采用下面的方法)
设直线AF为y=kx+b(k≠0)把点A(3,6),点F(,0)代入得
k=,b=10,
∴,
∴,
∴(舍去),,
∴B(6,2),
∴AB=5
在△ABE与△OED中
∵∠BAE=∠BED,
∴∠ABE+∠AEB=∠DEO+∠AEB,
∴∠ABE=∠DEO,
∵∠BAE=∠EOD,
∴△ABE∽△OED.
设OE=x,则AE=﹣x (),
由△ABE∽△OED得,
∴
∴()
∴顶点为(,)
如答图3,
当时,OE=x=,此时E点有1个;
当时,任取一个m的值都对应着两个x值,此时E点有2个.
∴当时,E点只有1个
当时,E点有2个
24、(1)70,0.2(2)70(3)750
【解析】
(1)根据题意和统计表中的数据可以求得m、n的值;
(2)根据(1)中求得的m的值,从而可以将条形统计图补充完整;
(3)根据统计表中的数据可以估计该校参加这次比赛的3000名学生中成绩“优”等约有多少人.
【详解】
解:(1)由题意可得,
m=200×0.35=70,n=40÷200=0.2,
故答案为70,0.2;
(2)由(1)知,m=70,
补全的频数分布直方图,如下图所示;
(3)由题意可得,
该校参加这次比赛的3000名学生中成绩“优”等约有:3000×0.25=750(人),
答:该校参加这次比赛的3000名学生中成绩“优”等约有750人.
【点睛】
本题考查频数分布直方图、频数分布表、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
25、不满足安全要求,理由见解析.
【解析】
在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.
【详解】
解:施工方提供的设计方案不满足安全要求,理由如下:
在Rt△ABC中,AC=15m,∠ABC=45°,
∴BC==15m.
在Rt△EFG中,EG=15m,∠EFG=37°,
∴GF=≈=20m.
∵EG=AC=15m,AC⊥BC,EG⊥BC,
∴EG∥AC,
∴四边形EGCA是矩形,
∴GC=EA=2m,
∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.
∴施工方提供的设计方案不满足安全要求.
26、(1)点B的坐标是(-5,-4);直线AB的解析式为:
(2)四边形CBED是菱形.理由见解析
【解析】
(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;
(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.
【详解】
解:(1)∵双曲线过A(3,),∴.把B(-5,)代入,
得. ∴点B的坐标是(-5,-4)
设直线AB的解析式为,
将 A(3,)、B(-5,-4)代入得,
, 解得:.
∴直线AB的解析式为:
(2)四边形CBED是菱形.理由如下:
点D的坐标是(3,0),点C的坐标是(-2,0).
∵ BE∥轴, ∴点E的坐标是(0,-4).
而CD =5, BE=5,且BE∥CD.
∴四边形CBED是平行四边形
在Rt△OED中,ED2=OE2+OD2,∴ ED==5,∴ED=CD.
∴□CBED是菱形
27、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
【解析】
分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
∴抛物线的解析式为y=x2﹣4x+1.
(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
(1)联结CE.
∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
同理,得点;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
综上所述:满足条件的点有),.
点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
湖北省天门市多宝镇一中学2023-2024学年数学八上期末统考模拟试题含答案: 这是一份湖北省天门市多宝镇一中学2023-2024学年数学八上期末统考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
湖北省天门市多宝镇第二中学2023-2024学年数学八上期末经典模拟试题含答案: 这是一份湖北省天门市多宝镇第二中学2023-2024学年数学八上期末经典模拟试题含答案,共7页。试卷主要包含了不等式4,化简结果正确的是等内容,欢迎下载使用。
湖北省天门市多宝镇第二中学2021-2022学年中考四模数学试题含解析: 这是一份湖北省天门市多宝镇第二中学2021-2022学年中考四模数学试题含解析,共22页。试卷主要包含了下列计算正确的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。