|试卷下载
搜索
    上传资料 赚现金
    2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析
    立即下载
    加入资料篮
    2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析01
    2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析02
    2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析

    展开
    这是一份2022届湖北省天门市多宝镇一中学中考数学全真模拟试题含解析,共26页。试卷主要包含了估计+1的值在等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是(  )

    A. B. C. D.
    2.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是( )
    A.k>- B.k>-且 C.k<- D.k-且
    3.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为(  )
    A.8.23×10﹣6 B.8.23×10﹣7 C.8.23×106 D.8.23×107
    4.下列图形中是轴对称图形但不是中心对称图形的是(  )
    A. B. C. D.
    5.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是(  )
    动时间(小时)
    3
    3.5
    4
    4.5
    人数
    1
    1
    2
    1
    A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75
    C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8
    6.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为(  )
    A.1.21×103 B.12.1×103 C.1.21×104 D.0.121×105
    7.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限(  )
    A.一、二 B.二、三 C.三、四 D.一、四
    8.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是(  )

    A.点A与点B B.点A与点D C.点B与点D D.点B与点C
    9.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )

    A.8 B.8 C.4 D.6
    10.估计+1的值在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.

    12.已知 a、b 是方程 x2﹣2x﹣1=0 的两个根,则 a2﹣a+b 的值是_______.
    13.如图,矩形ABCD,AB=2,BC=1,将矩形ABCD绕点A顺时针旋转90°得矩形AEFG,连接CG、EG,则∠CGE=________.

    14.如图,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,点B′和B分别对应).若AB=2,反比例函数y=(k≠0)的图象恰好经过A′,B,则k的值为_____.

    15.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.

    16.如图,在扇形AOB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为4时,阴影部分的面积为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

    (1)求抛物线的解析式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
    (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    18.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下

    如图(1)∠DAB=90°,求证:a2+b2=c2
    证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-a
    S四边形ADCB=
    S四边形ADCB=
    ∴化简得:a2+b2=c2
    请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c2
    19.(8分)如图,在矩形纸片ABCD中,AB=6,BC=1.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.

    (1)求证:△ABG≌△C′DG;
    (2)求tan∠ABG的值;
    (3)求EF的长.
    20.(8分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.
    (Ⅰ)如图①,求OD的长及的值;
    (Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.
    ①在旋转过程中,当∠BAG′=90°时,求α的大小;
    ②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).

    21.(8分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
    (问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
    (探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
    (应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.

    22.(10分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)

    23.(12分)如下表所示,有A、B两组数:

    第1个数
    第2个数
    第3个数
    第4个数
    ……
    第9个数
    ……
    第n个数
    A组
    ﹣6
    ﹣5
    ﹣2

    ……
    58
    ……
    n2﹣2n﹣5
    B组
    1
    4
    7
    10
    ……
    25
    ……

    (1)A组第4个数是   ;用含n的代数式表示B组第n个数是   ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.
    24.如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
    (1)点C坐标为 ;
    (2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
    (3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
    (4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.

    点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.
    2、B
    【解析】
    在与一元二次方程有关的求值问题中,必须满足下列条件:
    (1)二次项系数不为零;
    (2)在有两个实数根下必须满足△=b2-4ac≥1.
    【详解】
    由题意知,k≠1,方程有两个不相等的实数根,所以△>1,△=b2-4ac=(2k+1)2-4k2=4k+1>1.
    因此可求得k>且k≠1.
    故选B.
    【点睛】
    本题考查根据根的情况求参数,熟记判别式与根的关系是解题的关键.
    3、B
    【解析】
    分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    详解:0.000000823=8.23×10-1.
    故选B.
    点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    4、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念求解.
    详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;
    B、是轴对称图形,也是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项正确;
    D、不是轴对称图形,也不是中心对称图形,故此选项错误.
    故选:C.
    点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    5、C
    【解析】
    试题解析:这组数据中4出现的次数最多,众数为4,
    ∵共有5个人,
    ∴第3个人的劳动时间为中位数,
    故中位数为:4,
    平均数为:=3.1.
    故选C.
    6、C
    【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    详解:1.21万=1.21×104,
    故选:C.
    点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、D
    【解析】
    分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.
    详解:∵y=ax﹣x﹣a+1(a为常数),
    ∴y=(a-1)x-(a-1)
    当a-1>0时,即a>1,此时函数的图像过一三四象限;
    当a-1<0时,即a<1,此时函数的图像过一二四象限.
    故其函数的图像一定过一四象限.
    故选D.
    点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
    一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
    8、A
    【解析】
    试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
    故选A.
    考点:1.倒数的定义;2.数轴.
    9、D
    【解析】
    分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
    详解: 如图,连接OB,

    ∵BE=BF,OE=OF,
    ∴BO⊥EF,
    ∴在Rt△BEO中,∠BEF+∠ABO=90°,
    由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
    ∴∠BAC=∠ABO,
    又∵∠BEF=2∠BAC,
    即2∠BAC+∠BAC=90°,
    解得∠BAC=30°,
    ∴∠FCA=30°,
    ∴∠FBC=30°,
    ∵FC=2,
    ∴BC=2,
    ∴AC=2BC=4,
    ∴AB===6,
    故选D.
    点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
    10、B
    【解析】
    分析:直接利用2<<3,进而得出答案.
    详解:∵2<<3,
    ∴3<+1<4,
    故选B.
    点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    【分析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.
    【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,
    ∵点D、E分别是边AB、AC的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,且DE=BC,
    ∴△ADE∽△ABC,
    则=,即,
    解得:x=1,
    即四边形BCED的面积为1,
    故答案为1.
    【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.
    12、1
    【解析】
    根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.
    【详解】
    ∵a、b是方程x2-2x-1=0的两个根,
    ∴a2-2a=1,a+b=2,
    ∴a2-a+b=a2-2a+(a+b)=1+2=1.
    故答案为1.
    【点睛】
    本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-、两根之积等于是解题的关键.
    13、45°
    【解析】
    试题解析:

    如图,连接CE,
    ∵AB=2,BC=1,
    ∴DE=EF=1,CD=GF=2,
    在△CDE和△GFE中

    ∴△CDE≌△GFE(SAS),
    ∴CE=GE,∠CED=∠GEF,



    故答案为
    14、
    【解析】
    解:∵四边形ABCO是矩形,AB=1,
    ∴设B(m,1),∴OA=BC=m,
    ∵四边形OA′B′D与四边形OABD关于直线OD对称,
    ∴OA′=OA=m,∠A′OD=∠AOD=30°
    ∴∠A′OA=60°,
    过A′作A′E⊥OA于E,
    ∴OE=m,A′E=m,
    ∴A′(m,m),
    ∵反比例函数(k≠0)的图象恰好经过点A′,B,
    ∴ m•m=m,∴m=,∴k=
    故答案为

    15、
    【解析】
    过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
    【详解】
    解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
    在Rt△BDF中,BF=n,∠DBF=30°,
    ∴.
    在Rt△ACE中,∠AEC=90°,∠ACE=45°,
    ∴AE=CE=BF=n,
    ∴.
    故答案为:.

    【点睛】
    此题考查解直角三角形的应用,解题的关键在于做辅助线.
    16、4π﹣1
    【解析】
    分析:连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积-三角形ODC的面积,依此列式计算即可求解.
    详解:
    连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,

    ∴∠COD=45°,
    ∴OC=CD=4,
    ∴阴影部分的面积=扇形BOC的面积-三角形ODC的面积
    ==4π-1.
    故答案是:4π-1.
    点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.

    三、解答题(共8题,共72分)
    17、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为 :P1(,),P2(,),P3(,),P4(,).
    【解析】
    分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;
    (2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;
    (3)存在四种情况:
    如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.
    详解:(1)如图1,设抛物线与x轴的另一个交点为D,

    由对称性得:D(3,0),
    设抛物线的解析式为:y=a(x-1)(x-3),
    把A(0,3)代入得:3=3a,
    a=1,
    ∴抛物线的解析式;y=x2-4x+3;
    (2)如图2,设P(m,m2-4m+3),

    ∵OE平分∠AOB,∠AOB=90°,
    ∴∠AOE=45°,
    ∴△AOE是等腰直角三角形,
    ∴AE=OA=3,
    ∴E(3,3),
    易得OE的解析式为:y=x,
    过P作PG∥y轴,交OE于点G,
    ∴G(m,m),
    ∴PG=m-(m2-4m+3)=-m2+5m-3,
    ∴S四边形AOPE=S△AOE+S△POE,
    =×3×3+PG•AE,
    =+×3×(-m2+5m-3),
    =-m2+m,
    =(m-)2+,
    ∵-<0,
    ∴当m=时,S有最大值是;
    (3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,

    ∵△OPF是等腰直角三角形,且OP=PF,
    易得△OMP≌△PNF,
    ∴OM=PN,
    ∵P(m,m2-4m+3),
    则-m2+4m-3=2-m,
    解得:m=或,
    ∴P的坐标为(,)或(,);
    如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,

    同理得△ONP≌△PMF,
    ∴PN=FM,
    则-m2+4m-3=m-2,
    解得:x=或;
    P的坐标为(,)或(,);
    综上所述,点P的坐标是:(,)或(,)或(,)或(,).
    点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.
    18、见解析.
    【解析】
    首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.
    【详解】
    证明:连结BD,过点B作DE边上的高BF,则BF=b-a,

    ∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,
    又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),
    ∴ab+b1+ab=ab+c1+a(b-a),
    ∴a1+b1=c1.
    【点睛】
    此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.
    19、(1)证明见解析(2)7/24(3)25/6
    【解析】(1)证明:∵△BDC′由△BDC翻折而成,
    ∴∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,∴∠ABG=∠ADE。
    在△ABG≌△C′DG中,∵∠BAG=∠C,AB= C′D,∠ABG=∠AD C′,
    ∴△ABG≌△C′DG(ASA)。
    (2)解:∵由(1)可知△ABG≌△C′DG,∴GD=GB,∴AG+GB=AD。
    设AG=x,则GB=1﹣x,
    在Rt△ABG中,∵AB2+AG2=BG2,即62+x2=(1﹣x)2,解得x=。
    ∴。
    (3)解:∵△AEF是△DEF翻折而成,∴EF垂直平分AD。∴HD=AD=4。
    ∵tan∠ABG=tan∠ADE=。∴EH=HD×=4×。
    ∵EF垂直平分AD,AB⊥AD,∴HF是△ABD的中位线。∴HF=AB=×6=3。
    ∴EF=EH+HF=。
    (1)根据翻折变换的性质可知∠C=∠BAG=90°,C′D=AB=CD,∠AGB=∠DGC′,故可得出结论。
    (2)由(1)可知GD=GB,故AG+GB=AD,设AG=x,则GB=1-x,在Rt△ABG中利用勾股定理即可求出AG的长,从而得出tan∠ABG的值。
    (3)由△AEF是△DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tan∠ABG的值即可得出EH的长,同理可得HF是△ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。
    20、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)
    【解析】
    (1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,
    BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.
    【详解】
    (Ⅰ)如图1中,

    ∵A(0,1),
    ∴OA=1,
    ∵四边形OADC是正方形,
    ∴∠OAD=90°,AD=OA=1,
    ∴OD=AC==,
    ∴AB=BC=BD=BO=,
    ∵BD=DG,
    ∴BG=,
    ∴==.
    (Ⅱ)①如图2中,

    ∵∠BAG′=90°,BG′=2AB,
    ∴sin∠AG′B==,
    ∴∠AG′B=30°,
    ∴∠ABG′=60°,
    ∴∠DBG′=30°,
    ∴旋转角α=30°,
    根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,
    综上所述,旋转角α=30°或150°时,∠BAG′=90°.
    ②如图3中,连接OF,

    ∵四边形BE′F′G′是正方形的边长为
    ∴BF′=2,
    ∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,
    此时α=315°,F′(+,﹣)
    【点睛】
    本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.
    21、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
    【解析】
    (1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
    从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
    【详解】
    证明:如图①


    是的中线,



    (或证明四边形ABDE是平行四边形,从而得到)
    【探究】
    四边形ABPE是平行四边形.
    方法一:如图②,
    证明:过点D作交直线于点,


    ∴四边形是平行四边形,

    ∵由问题结论可得

    ∴四边形是平行四边形.
    方法二:如图③,

    证明:延长BP交直线CF于点N,





    ∵是的中线,



    ∴四边形是平行四边形.
    【应用】
    如图④,延长BP交CF于H.

    由上面可知,四边形是平行四边形,


    ∴四边形APHE是平行四边形,











    【点睛】
    此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
    22、29.8米.
    【解析】
    作,,根据题意确定出与的度数,利用锐角三角函数定义求出与的长度,由求出的长度,即可求出的长度.
    【详解】
    解:如图,作,,
    由题意得:


    米,
    米,
    则米,
    答:这架无人飞机的飞行高度为米.

    【点睛】
    此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
    23、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析
    【解析】
    (1)将n=4代入n2-2n-5中即可求解;
    (2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;
    (3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.
    【详解】
    解:(1))∵A组第n个数为n2-2n-5,
    ∴A组第4个数是42-2×4-5=3,
    故答案为3;
    (2)第n个数是.
    理由如下:
    ∵第1个数为1,可写成3×1-2;
    第2个数为4,可写成3×2-2;
    第3个数为7,可写成3×3-2;
    第4个数为10,可写成3×4-2;
    ……
    第9个数为25,可写成3×9-2;
    ∴第n个数为3n-2;
    故答案为3n-2;
    (3)不存在同一位置上存在两个数据相等;
    由题意得,,
    解之得,
    由于是正整数,所以不存在列上两个数相等.
    【点睛】
    本题考查了数字的变化类,正确的找出规律是解题的关键.
    24、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
    【解析】
    (1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
    (2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
    (3)将点N的坐标代入y=x2,看是否符合解析式即可;
    (4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
    【详解】
    (1)∵A(2,2),B(3,2),D(2,3),
    ∴AD=BC=1, 则点 C(3,3),
    故答案为:(3,3);
    (2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:

    解得:,
    ∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
    ∴顶点 N 坐标为(,);
    (3)由(2)把 x=代入 y=x2=()2= ,
    ∴抛物线的顶点在函数 y=x2的图象上运动;
    (4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
    解得: 【点睛】
    本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.

    相关试卷

    湖北省天门市多宝镇一中学2023-2024学年数学八上期末统考模拟试题含答案: 这是一份湖北省天门市多宝镇一中学2023-2024学年数学八上期末统考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    湖北省天门市多宝镇第二中学2023-2024学年数学八上期末经典模拟试题含答案: 这是一份湖北省天门市多宝镇第二中学2023-2024学年数学八上期末经典模拟试题含答案,共7页。试卷主要包含了不等式4,化简结果正确的是等内容,欢迎下载使用。

    湖北省天门市多宝镇第二中学2021-2022学年中考四模数学试题含解析: 这是一份湖北省天门市多宝镇第二中学2021-2022学年中考四模数学试题含解析,共22页。试卷主要包含了下列计算正确的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map