终身会员
搜索
    上传资料 赚现金

    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析第1页
    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析第2页
    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了sin60°的值为,-10-4的结果是,下列运算正确的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图所示的几何体,它的左视图是( )

    A. B. C. D.
    2.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是(  )
    A.(﹣2,1) B.(﹣8,4)
    C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
    3.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为( )
    A.13 B.11或13 C.11 D.12
    4.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )

    A. B. C. D.
    5.sin60°的值为(  )
    A. B. C. D.
    6.-10-4的结果是( )
    A.-7 B.7 C.-14 D.13
    7.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是( )

    A.△BAC∽△BDA B.△BFA∽△BEC
    C.△BDF∽△BEC D.△BDF∽△BAE
    8.下列运算正确的是(  )
    A. B.
    C.a2•a3=a5 D.(2a)3=2a3
    9.如图,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,点F是AC的中点,AD与FE,CE分别交于点G、H,∠BCE=∠CAD,有下列结论:①图中存在两个等腰直角三角形;②△AHE≌△CBE;③BC•AD=AE2;④S△ABC=4S△ADF.其中正确的个数有(  )

    A.1 B.2 C.3 D.4
    10.某同学将自己7次体育测试成绩(单位:分)绘制成折线统计图,则该同学7次测试成绩的众数和中位数分别是(  )

    A.50和48 B.50和47 C.48和48 D.48和43
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:
    x

    -5
    -4
    -3
    -2
    -1

    y

    3
    -2
    -5
    -6
    -5

    则关于x的一元二次方程ax2+bx+c=-2的根是______.
    12.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.

    13.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为____.

    14.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.

    15.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.

    16.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.

    17.如图,在中,,,为边的高,点在轴上,点在轴上,点在第一象限,若从原点出发,沿轴向右以每秒1个单位长的速度运动,则点随之沿轴下滑,并带动在平面内滑动,设运动时间为秒,当到达原点时停止运动
    连接,线段的长随的变化而变化,当最大时,______.当的边与坐标轴平行时,______.
    三、解答题(共7小题,满分69分)
    18.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
    类别
    频数(人数)
    频率
    小说

    0.5
    戏剧
    4

    散文
    10
    0.25
    其他
    6

    合计

    1
    根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.

    19.(5分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.
    求反比例函数的表达式;在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
    20.(8分)4件同型号的产品中,有1件不合格品和3件合格品.从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?
    21.(10分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.
    (1)求证:PM∥AD;
    (2)若∠BAP=2∠M,求证:PA是⊙O的切线;
    (3)若AD=6,tan∠M=,求⊙O的直径.

    22.(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
    (1)求直线AB的解析式;
    (2)根据图象写出当y1>y2时,x的取值范围;
    (3)若点P在y轴上,求PA+PB的最小值.

    23.(12分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)

    24.(14分)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22º时,
    教学楼在建筑物的墙上留下高2m的影子CE;而当光线与地面的夹角是45º时,教学楼顶A在地面上的影子F与墙角C有13m的距离(B、F、C在一条直线上).
    求教学楼AB的高度;学校要在A、E之间挂一些彩旗,请你求出A、E之间的距离(结果保留整数).



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    从左面观察几何体,能够看到的线用实线,看不到的线用虚线.
    【详解】
    从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,
    故选:A.
    【点睛】
    本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.
    2、D
    【解析】
    根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.
    【详解】
    ∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,
    ∴点A的对应点A′的坐标是:(-2,1)或(2,-1).
    故选D.
    【点睛】
    此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.
    3、B
    【解析】
    试题解析:x2-8x+15=0,
    分解因式得:(x-3)(x-5)=0,
    可得x-3=0或x-5=0,
    解得:x1=3,x2=5,
    若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;
    若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,
    综上,△ABC的周长为11或1.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.
    4、C
    【解析】
    试题分析:根据主视图是从正面看得到的图形,可得答案.
    解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.
    故选C.
    考点:简单组合体的三视图.
    5、B
    【解析】
    解:sin60°=.故选B.
    6、C
    【解析】
    解:-10-4=-1.故选C.
    7、C
    【解析】
    根据相似三角形的判定,采用排除法,逐项分析判断.
    【详解】
    ∵∠BAD=∠C,
    ∠B=∠B,
    ∴△BAC∽△BDA.故A正确.
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴△BFA∽△BEC.故B正确.
    ∴∠BFA=∠BEC,
    ∴∠BFD=∠BEA,
    ∴△BDF∽△BAE.故D正确.
    而不能证明△BDF∽△BEC,故C错误.
    故选C.
    【点睛】
    本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
    8、C
    【解析】
    根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
    【详解】
    解:A、=2,此选项错误;
    B、不能进一步计算,此选项错误;
    C、a2•a3=a5,此选项正确;
    D、(2a)3=8a3,此选项计算错误;
    故选:C.
    【点睛】
    本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
    9、C
    【解析】
    ①图中有3个等腰直角三角形,故结论错误;
    ②根据ASA证明即可,结论正确;
    ③利用面积法证明即可,结论正确;
    ④利用三角形的中线的性质即可证明,结论正确.
    【详解】
    ∵CE⊥AB,∠ACE=45°,
    ∴△ACE是等腰直角三角形,
    ∵AF=CF,
    ∴EF=AF=CF,
    ∴△AEF,△EFC都是等腰直角三角形,
    ∴图中共有3个等腰直角三角形,故①错误,
    ∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,
    ∴∠EAH=∠BCE,
    ∵AE=EC,∠AEH=∠CEB=90°,
    ∴△AHE≌△CBE,故②正确,
    ∵S△ABC=BC•AD=AB•CE,AB=AC=AE,AE=CE,
    ∴BC•AD=CE2,故③正确,
    ∵AB=AC,AD⊥BC,
    ∴BD=DC,
    ∴S△ABC=2S△ADC,
    ∵AF=FC,
    ∴S△ADC=2S△ADF,
    ∴S△ABC=4S△ADF.
    故选C.
    【点睛】
    本题考查相似三角形的判定和性质、等腰直角三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.
    10、A
    【解析】
    由折线统计图,可得该同学7次体育测试成绩,进而求出众数和中位数即可.
    【详解】
    由折线统计图,得:42,43,47,48,49,50,50,
    7次测试成绩的众数为50,中位数为48,
    故选:A.
    【点睛】
    本题考查了众数和中位数,解题的关键是利用折线统计图获取有效的信息.

    二、填空题(共7小题,每小题3分,满分21分)
    11、x1=-4,x1=2
    【解析】
    解:∵x=﹣3,x=﹣1的函数值都是﹣5,相等,∴二次函数的对称轴为直线x=﹣1.∵x=﹣4时,y=﹣1,∴x=2时,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案为x1=﹣4,x1=2.
    点睛:本题考查了二次函数的性质,主要利用了二次函数的对称性,读懂图表信息,求出对称轴解析式是解题的关键.
    12、(,1)或(﹣,1)
    【解析】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.将P的纵坐标代入函数解析式,求P点坐标即可
    【详解】
    根据直线和圆相切,则圆心到直线的距离等于圆的半径,得点P的纵坐标是1或-1.
    当y=1时, x1-1=1,解得x=±
    当y=-1时, x1-1=-1,方程无解
    故P点的坐标为()或(-)
    【点睛】
    此题注意应考虑两种情况.熟悉直线和圆的位置关系应满足的数量关系是解题的关键.
    13、22°
    【解析】
    由AE∥BD,根据平行线的性质求得∠CBD的度数,再由对顶角相等求得∠CDB的度数,继而利用三角形的内角和等于180°求得∠C的度数.
    【详解】
    解:∵AE∥BD,∠1=130°,∠2=28°,
    ∴∠CBD=∠1=130°,∠CDB=∠2=28°,
    ∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.
    故答案为22°
    【点睛】
    本题考查了平行线的性质,对顶角相等及三角形内角和定理.熟练运用相关知识是解决问题的关键.
    14、13 3n+1
    【解析】
    分析:观察图形发现:白色纸片在4的基础上,依次多3个;根据其中的规律得出第n个图案中有白色纸片即可.
    详解:∵第1个图案中有白色纸片3×1+1=4张
    第2个图案中有白色纸片3×2+1=7张,
    第3图案中有白色纸片3×3+1=10张,
    ∴第4个图案中有白色纸片3×4+1=13张
    第n个图案中有白色纸片3n+1张,
    故答案为:13、3n+1.
    点睛:考查学生的探究能力,解题时必须仔细观察规律,通过归纳得出结论.
    15、
    【解析】
    分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
    详解:由勾股定理得:= ,即(0,4).
    矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
    A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
    点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
    16、(2,)
    【解析】
    过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).
    故答案为(2,).

    17、4
    【解析】
    (1)由等腰三角形的性质可得AD=BD,从而可求出OD=4,然后根据当O,D,C共线时,OC取最大值求解即可;
    (2)根据等腰三角形的性质求出CD,分AC∥y轴、BC∥x轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.
    【详解】
    (1),

    当O,D,C共线时,OC取最大值,此时OD⊥AB.
    ∵,
    ∴△AOB为等腰直角三角形,
    ∴ ;
    (2)∵BC=AC,CD为AB边的高,
    ∴∠ADC=90°,BD=DA=AB=4,
    ∴CD==3,
    当AC∥y轴时,∠ABO=∠CAB,
    ∴Rt△ABO∽Rt△CAD,
    ∴,即,
    解得,t=,
    当BC∥x轴时,∠BAO=∠CBD,
    ∴Rt△ABO∽Rt△BCD,
    ∴,即,
    解得,t= ,
    则当t=或时,△ABC的边与坐标轴平行.
    故答案为t=或.
    【点睛】
    本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)41(2)15%(3)
    【解析】
    (1)用散文的频数除以其频率即可求得样本总数;
    (2)根据其他类的频数和总人数求得其百分比即可;
    (3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.
    【详解】
    (1)∵喜欢散文的有11人,频率为1.25,
    ∴m=11÷1.25=41;
    (2)在扇形统计图中,“其他”类所占的百分比为 ×111%=15%,
    故答案为15%;
    (3)画树状图,如图所示:

    所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
    ∴P(丙和乙)==.
    19、(1);(2)P(,0);(3)E(,﹣1),在.
    【解析】
    (1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;
    (2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;
    (3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.
    【详解】
    (1)∵点A(,1)在反比例函数的图象上,
    ∴k=×1=,
    ∴反比例函数的表达式为;
    (2)∵A(,1),AB⊥x轴于点C,
    ∴OC=,AC=1,由射影定理得=AC•BC,
    可得BC=3,B(,﹣3),S△AOB=××4=,
    ∴S△AOP=S△AOB=.
    设点P的坐标为(m,0),
    ∴×|m|×1=,
    ∴|m|=,
    ∵P是x轴的负半轴上的点,
    ∴m=﹣,
    ∴点P的坐标为(,0);
    (3)点E在该反比例函数的图象上,理由如下:
    ∵OA⊥OB,OA=2,OB=,AB=4,
    ∴sin∠ABO===,
    ∴∠ABO=30°,
    ∵将△BOA绕点B按逆时针方向旋转60°得到△BDE,
    ∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,
    ∴E(,﹣1),
    ∵×(﹣1)=,
    ∴点E在该反比例函数的图象上.
    考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;坐标与图形变化-旋转.
    20、(1);(2);(3)x=1.
    【解析】
    (1)用不合格品的数量除以总量即可求得抽到不合格品的概率;
    (2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;
    (3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.
    【详解】
    解:(1)∵4件同型号的产品中,有1件不合格品,
    ∴P(不合格品)=;
    (2)
    共有12种情况,抽到的都是合格品的情况有6种,
    P(抽到的都是合格品)==;
    (3)∵大量重复试验后发现,抽到合格品的频率稳定在0.95,
    ∴抽到合格品的概率等于0.95,
    ∴ =0.95,
    解得:x=1.
    【点睛】
    本题考查利用频率估计概率;概率公式;列表法与树状图法.
    21、(1)证明见解析;(2)证明见解析;(3)1;
    【解析】
    (1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.
    【详解】
    (1)∵BD是直径,
    ∴∠DAB=90°,
    ∵PO⊥AB,
    ∴∠DAB=∠MCB=90°,
    ∴PM∥AD;
    (2)连接OA,
    ∵OB=OM,
    ∴∠M=∠OBM,
    ∴∠BON=2∠M,
    ∵∠BAP=2∠M,
    ∴∠BON=∠BAP,
    ∵PO⊥AB,
    ∴∠ACO=90°,
    ∴∠AON+∠OAC=90°,
    ∵OA=OB,
    ∴∠BON=∠AON,
    ∴∠BAP=∠AON,
    ∴∠BAP+∠OAC=90°,
    ∴∠OAP=90°,
    ∵OA是半径,
    ∴PA是⊙O的切线;
    (3)连接BN,
    则∠MBN=90°.
    ∵tan∠M=,
    ∴=,
    设BC=x,CM=2x,
    ∵MN是⊙O直径,NM⊥AB,
    ∴∠MBN=∠BCN=∠BCM=90°,
    ∴∠NBC=∠M=90°﹣∠BNC,
    ∴△MBC∽△BNC,
    ∴,
    ∴BC2=NC×MC,
    ∴NC=x,
    ∴MN=2x+x=2.1x,
    ∴OM=MN=1.21x,
    ∴OC=2x﹣1.21x=0.71x,
    ∵O是BD的中点,C是AB的中点,AD=6,
    ∴OC=0.71x=AD=3,
    解得:x=4,
    ∴MO=1.21x=1.21×4=1,
    ∴⊙O的半径为1.

    【点睛】
    本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.
    22、(1)y=﹣x+4;(2)1<x<1;(1)2.
    【解析】
    (1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
    (2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
    (1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
    【详解】
    (1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
    m=1,n=1,
    ∴A(1,1)、B(1,1),
    把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
    ,解得,
    ∴直线AB的解析式为y=-x+4;
    (2)观察函数图象,发现:
    当1<x<1时,正比例函数图象在反比例函数图象的上方,
    ∴当y1>y2时,x的取值范围是1<x<1.
    (1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
    过C作y轴的平行线,过B作x轴的平行线,交于点D,则

    Rt△BCD中,BC=,
    ∴PA+PB的最小值为2.
    【点睛】
    本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
    23、小亮说的对,CE为2.6m.
    【解析】
    先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.
    【详解】
    解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,
    ∵tan∠BAD=,
    ∴BD=10×tan18°,
    ∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),
    在△ABD中,∠CDE=90°﹣∠BAD=72°,
    ∵CE⊥ED,
    ∴sin∠CDE=,
    ∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),
    ∵2.6m<2.7m,且CE⊥AE,
    ∴小亮说的对.
    答:小亮说的对,CE为2.6m.
    【点睛】
    本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.
    24、(1)2m(2)27m
    【解析】
    (1)首先构造直角三角形△AEM,利用,求出即可.
    (2)利用Rt△AME中,,求出AE即可.
    【详解】
    解:(1)过点E作EM⊥AB,垂足为M.

    设AB为x.
    在Rt△ABF中,∠AFB=45°,
    ∴BF=AB=x,
    ∴BC=BF+FC=x+1.
    在Rt△AEM中,∠AEM=22°,AM=AB-BM=AB-CE=x-2,
    又∵,∴,解得:x≈2.
    ∴教学楼的高2m.
    (2)由(1)可得ME=BC=x+1≈2+1=3.
    在Rt△AME中,,
    ∴AE=MEcos22°≈.
    ∴A、E之间的距离约为27m.

    相关试卷

    天津市西青区市级名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份天津市西青区市级名校2022-2023学年中考数学最后冲刺浓缩精华卷含解析,共17页。

    江西省赣州市石城县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份江西省赣州市石城县市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,对于反比例函数y=等内容,欢迎下载使用。

    2022届北京丰台市级名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022届北京丰台市级名校中考数学最后冲刺浓缩精华卷含解析,共17页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map