终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析第1页
    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析第2页
    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析

    展开

    这是一份湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了我市连续7天的最高气温为,计算的结果为,如图,内接于,若,则,估计+1的值在等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是(  )

    A.点A与点B B.点A与点D C.点B与点D D.点B与点C
    2.如图,将△ABC 绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )

    A.∠BCB′=∠ACA′ B.∠ACB=2∠B
    C.∠B′CA=∠B′AC D.B′C 平分∠BB′A′
    3.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(    )

    A.4 B.3 C.2 D.
    4.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=(  )

    A.15° B.30° C.45° D.60°
    5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    6.计算的结果为(  )
    A.2 B.1 C.0 D.﹣1
    7.如图,内接于,若,则  

    A. B. C. D.
    8.估计+1的值在(  )
    A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
    9.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,,则四边形EFCD的周长为  

    A.14 B.13 C.12 D.10
    10.某微生物的直径为0.000 005 035m,用科学记数法表示该数为(  )
    A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣5
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.

    12.以下两题任选一题作答:
    (1).下图是某商场一楼二楼之间的手扶电梯示意图,其中 AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是 8m,则乘电梯次点 B 到点 C 上升的高度 h 是_____m.

    (2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.
    13.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.

    14.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于 .

    15.如果a+b=2,那么代数式(a﹣)÷的值是______.
    16.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”
    用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.

    三、解答题(共8题,共72分)
    17.(8分)为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)

    (1)求这7天内小申家每天用水量的平均数和中位数;
    (2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
    (3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.
    18.(8分)如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,
    已知A(2,5).求:b和k的值;△OAB的面积.

    19.(8分)已知关于x的一元二次方程有实数根.
    (1)求k的取值范围;
    (2)若k为正整数,且方程有两个非零的整数根,求k的取值.
    20.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.

    21.(8分)随着高铁的建设,春运期间动车组发送旅客量越来越大,相关部门为了进一步了解春运期间动车组发送旅客量的变化情况,针对2014年至2018年春运期间的铁路发送旅客量情况进行了调查,过程如下.
    (Ⅰ)收集、整理数据
    请将表格补充完整:

    (Ⅱ)描述数据
    为了更直观地显示动车组发送旅客量占比的变化趋势,需要用什么图(回答“折线图”或“扇形图”)进行描述;
    (Ⅲ)分析数据、做出推测
    预估2019年春运期间动车组发送旅客量占比约为多少,说明你的预估理由.
    22.(10分)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣3(m≠0)与x轴交于A(3,0),B两点.
    (1)求抛物线的表达式及点B的坐标;
    (2)当﹣2<x<3时的函数图象记为G,求此时函数y的取值范围;
    (3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不变,得到一个新图象M.若经过点C(4.2)的直线y=kx+b(k≠0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围.
    23.(12分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.
    求证:(1)△ABE≌△CDF;
    (2)四边形BFDE是平行四边形.
    24.台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p= t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:
    (1)求日销售量y与时间t的函数关系式?
    (2)哪一天的日销售利润最大?最大利润是多少?
    (3)该养殖户有多少天日销售利润不低于2400元?




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:
    倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.
    倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    根据倒数定义可知,-2的倒数是-,有数轴可知A对应的数为-2,B对应的数为-,所以A与B是互为倒数.
    故选A.
    考点:1.倒数的定义;2.数轴.
    2、C
    【解析】
    根据旋转的性质求解即可.
    【详解】
    解:根据旋转的性质,A:∠与∠均为旋转角,故∠=∠,故A正确;
    B:,,

    ,

    ,故B正确;
    D:,
    B′C平分∠BB′A′,故D正确.
    无法得出C中结论,
    故答案:C.
    【点睛】
    本题主要考查三角形旋转后具有的性质,注意灵活运用各条件
    3、B
    【解析】
    首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
    【详解】
    把x=1代入得:y=1,
    ∴A(1,1),把x=2代入得:y=,
    ∴B(2, ),
    ∵AC//BD// y轴,
    ∴C(1,K),D(2,)
    ∴AC=k-1,BD=-,
    ∴S△OAC=(k-1)×1,
    S△ABD= (-)×1,
    又∵△OAC与△ABD的面积之和为,
    ∴(k-1)×1+ (-)×1=,解得:k=3;
    故答案为B.
    【点睛】
    :此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
    4、B
    【解析】
    根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
    【详解】
    解:∵OA=AB,OA=OB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°,
    ∴∠ACB=30°,
    故选B.
    【点睛】
    本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
    5、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    6、B
    【解析】
    按照分式运算规则运算即可,注意结果的化简.
    【详解】
    解:原式=,故选择B.
    【点睛】
    本题考查了分式的运算规则.
    7、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    8、B
    【解析】
    分析:直接利用2<<3,进而得出答案.
    详解:∵2<<3,
    ∴3<+1<4,
    故选B.
    点睛:此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.
    9、C
    【解析】
    ∵平行四边形ABCD,
    ∴AD∥BC,AD=BC,AO=CO,
    ∴∠EAO=∠FCO,
    ∵在△AEO和△CFO中,

    ∴△AEO≌△CFO,
    ∴AE=CF,EO=FO=1.5,
    ∵C四边形ABCD=18,∴CD+AD=9,
    ∴C四边形CDEF=CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.
    故选C.
    【点睛】
    本题关键在于利用三角形全等,解题关键是将四边形CDEF的周长进行转化.
    10、A
    【解析】
    试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.
    考点:科学记数法—表示较小的数.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可
    【详解】
    设AE为x,
    连接OC,

    ∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,
    ∴∠CEO=90°,CE=DE=4,
    由勾股定理得:OC2=CE2+OE2,
    52=42+(5-x)2,
    解得:x=2,
    则AE是2,
    故答案为:2
    【点睛】
    此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.
    12、4 8
    【解析】
    (1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;
    (2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
    故可列出方程求解.
    【详解】
    (1)∵∠ABC=150°,∴斜面BC的坡角为30°,
    ∴h==4m
    (2)设这个多边形边上为n,则内角和为(n-2)×180°,外角度数为
    依题意得
    解得n=8
    故为八边形.
    【点睛】
    此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.
    13、2
    【解析】
    连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
    【详解】
    连接OC,

    ∵PC是⊙O的切线,
    ∴OC⊥PC,
    ∴∠OCP=90°,
    ∵PC=2,OC=2,
    ∴OP===4,
    ∴∠OPC=30°,
    ∴∠COP=60°,
    ∵OC=OB=2,
    ∴△OCB是等边三角形,
    ∴BC=OB=2,
    故答案为2
    【点睛】
    本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    14、1.
    【解析】
    由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.
    【详解】
    ∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,
    ∴DE=AC=5,
    ∴AC=2.
    在直角△ACD中,∠ADC=90°,AD=6,AC=2,则根据勾股定理,得

    故答案是:1.
    15、2
    【解析】
    分析:根据分式的运算法则即可求出答案.
    详解:当a+b=2时,
    原式=
    =
    =a+b
    =2
    故答案为:2
    点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
    16、
    【解析】
    分析:由正方形的性质得到∠EDG=90°,从而∠KDC+∠HDA=90°,再由∠C+∠KDC=90°,得到∠C=∠HDA,即有△CKD∽△DHA,由相似三角形的性质得到CK:KD=HD:HA,求解即可得到结论.
    详解:∵DEFG是正方形,∴∠EDG=90°,∴∠KDC+∠HDA=90°.
    ∵∠C+∠KDC=90°,∴∠C=∠HDA.
    ∵∠CKD=∠DHA=90°,∴△CKD∽△DHA,
    ∴CK:KD=HD:HA,∴CK:100=100:15,
    解得:CK=.
    故答案为:.
    点睛:本题考查了相似三角形的应用.解题的关键是证明△CKD∽△DHA.

    三、解答题(共8题,共72分)
    17、(1)平均数为800升,中位数为800升;(2)12.5%;(3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,一个月估计可以节约用水3000升.
    【解析】
    试题分析:(1)根据平均数和中位数的定义求解可得;
    (2)用洗衣服的水量除以第3天的用水总量即可得;
    (3)根据条形图给出合理建议均可,如:将洗衣服的水留到冲厕所.
    试题解析:解:(1)这7天内小申家每天用水量的平均数为(815+780+800+785+790+825+805)÷7=800(升),
    将这7天的用水量从小到大重新排列为:780、785、790、800、805、815、825,
    ∴用水量的中位数为800升;
    (2)×100%=12.5%.
    答:第3天小申家洗衣服的水占这一天总用水量的百分比为12.5%;
    (3)小申家冲厕所的用水量较大,可以将洗衣服的水留到冲厕所,采用以上建议,每天可节约用水100升,一个月估计可以节约用水100×30=3000升.
    18、(1)b=3,k=10;(2)S△AOB=.
    【解析】
    (1)由直线y=x+b与双曲线y=相交于A、B两点,A(2,5),即可得到结论;
    (2)过A作AD⊥x轴于D,BE⊥x轴于E,根据y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论.
    解:()把代入.∴∴.
    把代入,∴,
    ∴.
    ()∵,.
    ∴时,,
    ∴,.∴.
    又∵,
    ∴ .
    19、(1);(2)k=1
    【解析】
    (1)根据一元二次方程2x2+4x+k﹣1=0有实数根,可得出△≥0,解不等式即可得出结论;
    (2)分别把k的正整数值代入方程2x2+4x+k﹣1=0,根据解方程的结果进行分析解答.
    【详解】
    (1)由题意得:△=16﹣8(k﹣1)≥0,∴k≤1.
    (2)∵k为正整数,∴k=1,2,1.
    当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x =0,解得:x=0或x=-2,有一个根为零;
    当k=2时,方程2x2+4x+k﹣1=0变为:2x2+4x +1=0,解得:x=,无整数根;
    当k=1时,方程2x2+4x+k﹣1=0变为:2x2+4x +2=0,解得:x1=x2=-1,有两个非零的整数根.
    综上所述:k=1.
    【点睛】
    本题考查了一元二次方程根的判别式:
    (1)△>0⇔方程有两个不相等的实数根;
    (2)△=0⇔方程有两个相等的实数根;
    (1)△<0⇔方程没有实数根.
    20、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;
    (2)﹣3<x<0或x>2;
    (3)1.
    【解析】
    (1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式
    (2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围
    (3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积
    【详解】
    解:(1)∵点A(2,3)在y=的图象上,∴m=6,
    ∴反比例函数的解析式为:y=,
    ∴n==﹣2,
    ∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
    ∴,
    解得:,
    ∴一次函数的解析式为:y=x+1;
    (2)由图象可知﹣3<x<0或x>2;
    (3)以BC为底,则BC边上的高为3+2=1,

    ∴S△ABC=×2×1=1.
    21、(Ⅰ)见表格;(Ⅱ)折线图;(Ⅲ)60%、之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
    【解析】
    (Ⅰ)根据百分比的意义解答可得;(Ⅱ)根据折线图和扇形图的特点选择即可得;(Ⅲ)根据之前每年增加的百分比依次为7%、6%、5%、4%,据此预测 2019 年增加的百分比接近3% .
    【详解】
    (Ⅰ)
    年份
    2014
    2015
    2016
    2017
    2018
    动车组发送旅客量 a 亿人次
    0.87
    1.14
    1.46
    1.80
    2.17
    铁路发送旅客总量 b 亿人次
    2.52
    2.76
    3.07
    3.42
    3.82
    动车组发送旅客量占比× 100
    34.5 %
    41.3 %
    47.6 %
    52.6 %
    56.8 %
    (Ⅱ)为了更直观地显示动车组发送旅客量占比的变化趋势,需要用折线图进行描述,
    故答案为折线图;
    (Ⅲ)预估 2019 年春运期间动车组发送旅客量占比约为 60%,
    预估理由是之前每年增加的百分比依次为 7%、6%、5%、4%,据此预测 2019 年增加的百分比接近 3%.
    【点睛】
    本题考查了统计图的选择,根据统计图的特点正确选择统计图是解题的关键.
    22、(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);
    (2)y的取值范围是﹣3≤y<1.
    (2)b的取值范围是﹣<b<.
    【解析】
    (1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.
    【详解】
    (1)∵将A(2,0)代入,得m=1, ∴抛物线的表达式为y=-2x-2.
    令-2x-2=0,解得:x=2或x=-1, ∴B点的坐标(-1,0).
    (2)y=-2x-2=-3.
    ∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,
    ∴当x=1,y最小=-3. 又∵当x=-2,y=1, ∴y的取值范围是-3≤y<1.
    (2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+.
    当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2.
    由函数图象可知;b的取值范围是:-2<b<.
    【点睛】
    本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.
    23、(1)见解析;(2)见解析;
    【解析】
    (1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.
    (2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.
    【详解】
    证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,
    在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,
    ∴△ABE≌△CDF(SAS).
    (2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.
    ∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.
    ∴四边形BFDE是平行四边形.
    24、 (1)y=﹣2t+200(1≤t≤80,t为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.
    【解析】
    (1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;
    (2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;
    (3)求出w=2400时t的值,结合函数图象即可得出答案;
    【详解】
    (1)设解析式为y=kt+b,将(1,198)、(80,40)代入,得:
    ,解得:,∴y=﹣2t+200(1≤t≤80,t为整数);
    (2)设日销售利润为w,则w=(p﹣6)y,
    当1≤t≤80时,w=(t+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450,
    ∴当t=30时,w最大=2450;

    ∴第30天的日销售利润最大,最大利润为2450元.
    (3)由(2)得:当1≤t≤80时,
    w=﹣(t﹣30)2+2450,
    令w=2400,即﹣ (t﹣30)2+2450=2400,
    解得:t1=20、t2=40,
    ∴t的取值范围是20≤t≤40,
    ∴共有21天符合条件.
    【点睛】
    本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.

    相关试卷

    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了sin60°的值为,-10-4的结果是,下列运算正确的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    湖北省襄阳市三十三中市级名校2021-2022学年中考五模数学试题含解析:

    这是一份湖北省襄阳市三十三中市级名校2021-2022学年中考五模数学试题含解析,共20页。试卷主要包含了下面四个几何体,tan45°的值等于等内容,欢迎下载使用。

    广西省北海市市级名校2021-2022学年中考冲刺卷数学试题含解析:

    这是一份广西省北海市市级名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了下列计算正确的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map