终身会员
搜索
    上传资料 赚现金

    2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析

    立即下载
    加入资料篮
    2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析第1页
    2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析第2页
    2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析

    展开

    这是一份2021-2022学年湖北省襄阳市市级名校中考一模数学试题含解析,共19页。


    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是(  )

    A. B. C. D.
    2.如图,在中,点D、E、F分别在边、、上,且,.下列四种说法: ①四边形是平行四边形;②如果,那么四边形是矩形;③如果平分,那么四边形是菱形;④如果且,那么四边形是菱形. 其中,正确的有( ) 个

    A.1 B.2 C.3 D.4
    3.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).

    A. B. C. D.
    4.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=(  )

    A.2.5 B.3 C.4 D.5
    5.下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为( )

    A. B. C. D.
    6.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是( )
    A. B. C. D.
    7.如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA的延长线交于点E,如果,那么的值是(  )

    A. B. C. D.
    8.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为(  )

    A.1 B.2 C.3 D.4
    9.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为(  )

    A.1 B.m C.m2 D.
    10.如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )

    A.2πcm B.4πcm C.6πcm D.8πcm
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.

    12.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
    13.观察下列图形:它们是按一定的规律排列的,依照此规律,第n个图形共有___个★.

    14.如图,边长一定的正方形ABCD,Q是CD上一动点,AQ交BD于点M,过M作MN⊥AQ交BC于N点,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;
    ②MP=BD;③BN+DQ=NQ;④为定值。其中一定成立的是_______.

    15.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
    16.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.

    17.已知抛物线y=,那么抛物线在y轴右侧部分是_________(填“上升的”或“下降的”).
    三、解答题(共7小题,满分69分)
    18.(10分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
    19.(5分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为P(2,9),与x轴交于点A,B,与y轴交于点C(0,5).
    (Ⅰ)求二次函数的解析式及点A,B的坐标;
    (Ⅱ)设点Q在第一象限的抛物线上,若其关于原点的对称点Q′也在抛物线上,求点Q的坐标;
    (Ⅲ)若点M在抛物线上,点N在抛物线的对称轴上,使得以A,C,M,N为顶点的四边形是平行四边形,且AC为其一边,求点M,N的坐标.

    20.(8分)先化简,后求值:,其中.
    21.(10分)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.

    22.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.

    (1)求证:PC是⊙O的切线;
    (2)若PC=3,PF=1,求AB的长.
    23.(12分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
    (1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为   m.
    (2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)

    24.(14分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    主视图、俯视图是分别从物体正面、上面看,所得到的图形.
    【详解】
    综合主视图和俯视图,底层最少有个小立方体,第二层最少有个小立方体,因此搭成这个几何体的小正方体的个数最少是个.
    故选:B.
    【点睛】
    此题考查由三视图判断几何体,解题关键在于识别图形
    2、D
    【解析】
    先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出AEDF为平行四边形,得出①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;若AD平分∠BAC,得到一对角相等,再根据两直线平行内错角相等又得到一对角相等,等量代换可得∠EAD=∠EDA,利用等角对等边可得一组邻边相等,根据邻边相等的平行四边形为菱形可得出③正确;由AB=AC,AD⊥BC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,④正确,进而得到正确说法的个数.
    【详解】
    解:∵DE∥CA,DF∥BA,
    ∴四边形AEDF是平行四边形,选项①正确;
    若∠BAC=90°,
    ∴平行四边形AEDF为矩形,选项②正确;
    若AD平分∠BAC,
    ∴∠EAD=∠FAD,
    又DE∥CA,∴∠EDA=∠FAD,
    ∴∠EAD=∠EDA,
    ∴AE=DE,
    ∴平行四边形AEDF为菱形,选项③正确;
    若AB=AC,AD⊥BC,
    ∴AD平分∠BAC,
    同理可得平行四边形AEDF为菱形,选项④正确,
    则其中正确的个数有4个.
    故选D.
    【点睛】
    此题考查了平行四边形的定义,菱形、矩形的判定,涉及的知识有:平行线的性质,角平分线的定义,以及等腰三角形的判定与性质,熟练掌握平行四边形、矩形及菱形的判定与性质是解本题的关键.
    3、D
    【解析】
    从正面看,共2列,左边是1个正方形,
    右边是2个正方形,且下齐.
    故选D.
    4、A
    【解析】
    先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
    【详解】
    ∵∠ACB=90°,D为AB中点
    ∴CD=
    ∵点E、F分别为BC、BD中点
    ∴.
    故答案为:A.
    【点睛】
    本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
    5、B
    【解析】
    由俯视图所标该位置上小立方块的个数可知,左侧一列有2层,右侧一列有1层.
    【详解】
    根据俯视图中的每个数字是该位置小立方块的个数,得出主视图有2列,从左到右的列数分别是2,1.
    故选B.
    【点睛】
    此题考查了三视图判断几何体,用到的知识点是俯视图、主视图,关键是根据三种视图之间的关系以及视图和实物之间的关系.
    6、B.
    【解析】
    试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:,故选B.
    考点:由实际问题抽象出一元二次方程.
    7、D
    【解析】
    分析:根据相似三角形的性质进行解答即可.
    详解:∵在平行四边形ABCD中,
    ∴AE∥CD,
    ∴△EAF∽△CDF,



    ∵AF∥BC,
    ∴△EAF∽△EBC,

    故选D.
    点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.
    8、A
    【解析】
    试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
    ∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
    ∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
    考点:线段垂直平分线的性质
    9、D
    【解析】
    本题主要考察二次函数与反比例函数的图像和性质.
    【详解】
    令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
    【点睛】
    巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
    10、B
    【解析】
    首先连接OC,AO,由切线的性质,可得OC⊥AB,根据已知条件可得:OA=2OC,进而求出∠AOC的度数,则圆心角∠AOB可求,根据弧长公式即可求出劣弧AB的长.
    【详解】
    解:如图,连接OC,AO,

    ∵大圆的一条弦AB与小圆相切,
    ∴OC⊥AB,
    ∵OA=6,OC=3,
    ∴OA=2OC,
    ∴∠A=30°,
    ∴∠AOC=60°,
    ∴∠AOB=120°,
    ∴劣弧AB的长= =4π,
    故选B.
    【点睛】
    本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、1
    【解析】
    试题解析:如图,

    ∵a∥b,∠3=40°,
    ∴∠4=∠3=40°.
    ∵∠1=∠2+∠4=110°,
    ∴∠2=110°-∠4=110°-40°=1°.
    故答案为:1.
    12、k≥﹣1
    【解析】
    分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
    详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
    ∴△=12-1×1×(-k)=16+1k≥0,
    解得:k≥-1.
    故答案为k≥-1.
    点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    13、
    【解析】
    分别求出第1个、第2个、第3个、第4个图形中★的个数,得到第5个图形中★的个数,进而找到规律,得出第n个图形中★的个数,即可求解.
    【详解】
    第1个图形中有1+3×1=4个★,
    第2个图形中有1+3×2=7个★,
    第3个图形中有1+3×3=10个★,
    第4个图形中有1+3×4=13个★,
    第5个图形中有1+3×5=16个★,

    第n个图形中有1+3×n=(3n+1)个★.
    故答案是:1+3n.
    【点睛】
    考查了规律型:图形的变化类;根据图形中变化的量和n的关系与不变的量得到图形中★的个数与n的关系是解决本题的关键.
    14、①②③④
    【解析】

    ①如图1,作AU⊥NQ于U,交BD于H,连接AN,AC,
    ∵∠AMN=∠ABC=90°,
    ∴A,B,N,M四点共圆,
    ∴∠NAM=∠DBC=45°,∠ANM=∠ABD=45°,
    ∴∠ANM=∠NAM=45°,
    ∴AM=MN;
    ②由同角的余角相等知,∠HAM=∠PMN,
    ∴Rt△AHM≌Rt△MPN,
    ∴MP=AH=AC=BD;
    ③∵∠BAN+∠QAD=∠NAQ=45°,
    ∴在∠NAM作AU=AB=AD,且使∠BAN=∠NAU,∠DAQ=∠QAU,
    ∴△ABN≌△UAN,△DAQ≌△UAQ,有∠UAN=∠UAQ,BN=NU,DQ=UQ,
    ∴点U在NQ上,有BN+DQ=QU+UN=NQ;
    ④如图2,作MS⊥AB,垂足为S,作MW⊥BC,垂足为W,点M是对角线BD上的点,
    ∴四边形SMWB是正方形,有MS=MW=BS=BW,
    ∴△AMS≌△NMW
    ∴AS=NW,
    ∴AB+BN=SB+BW=2BW,
    ∵BW:BM=1: ,
    ∴.
    故答案为:①②③④
    点睛:本题考查了正方形的性质,四点共圆的判定,圆周角定理,等腰直角三角形的性质,全等三角形的判定和性质;熟练掌握正方形的性质,正确作出辅助线并运用有关知识理清图形中西安段间的关系,证明三角形全等是解决问题的关键.
    15、m>1
    【解析】
    ∵反比例函数的图象在其每个象限内,y随x的增大而减小,
    ∴>0,
    解得:m>1,
    故答案为m>1.
    16、64°
    【解析】
    解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.
    点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.
    17、上升的
    【解析】
    ∵抛物线y=x2-1开口向上,对称轴为x=0 (y 轴),
    ∴在y 轴右侧部分抛物线呈上升趋势.
    故答案为:上升的.
    【点睛】
    本题考查的知识点是二次函数的性质,解题的关键是熟练的掌握二次函数的性质.

    三、解答题(共7小题,满分69分)
    18、
    【解析】
    分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.
    详解:列表如下:






    ﹣﹣﹣
    (红,红)
    (白,红)
    (黑,红)

    (红,红)
    ﹣﹣﹣
    (白,红)
    (黑,红)

    (红,白)
    (红,白)
    ﹣﹣﹣
    (黑,白)

    (红,黑)
    (红,黑)
    (白,黑)
    ﹣﹣﹣
    所有等可能的情况有12种,其中两次都摸到红球有2种可能,
    则P(两次摸到红球)==.
    点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
    19、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).
    【解析】
    (1)设顶点式,再代入C点坐标即可求解解析式,再令y=0可求解A和B点坐标;
    (2)设点Q(m,﹣m2+4m+5),则其关于原点的对称点Q′(﹣m,m2﹣4m﹣5),再将Q′坐标代入抛物线解析式即可求解m的值,同时注意题干条件“Q在第一象限的抛物线上”;
    (3)利用平移AC的思路,作MK⊥对称轴x=2于K,使MK=OC,分M点在对称轴左边和右边两种情况分类讨论即可.
    【详解】
    (Ⅰ)设二次函数的解析式为y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,
    ∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,
    令y=0,得到:x2﹣4x﹣5=0,
    解得x=﹣1或5,
    ∴A(﹣1,0),B(5,0).
    (Ⅱ)设点Q(m,﹣m2+4m+5),则Q′(﹣m,m2﹣4m﹣5).
    把点Q′坐标代入y=﹣x2+4x+5,
    得到:m2﹣4m﹣5=﹣m2﹣4m+5,
    ∴m=或(舍弃),
    ∴Q(,).
    (Ⅲ)如图,作MK⊥对称轴x=2于K.

    ①当MK=OA,NK=OC=5时,四边形ACNM是平行四边形.
    ∵此时点M的横坐标为1,
    ∴y=8,
    ∴M(1,8),N(2,13),
    ②当M′K=OA=1,KN′=OC=5时,四边形ACM′N′是平行四边形,
    此时M′的横坐标为3,可得M′(3,8),N′(2,3).
    【点睛】
    本题主要考查了二次函数的应用,第3问中理解通过平移AC可应用“一组对边平行且相等”得到平行四边形.
    20、,
    【解析】
    分析:先把分值分母因式分解后约分,再进行通分得到原式=,然后把x的值代入计算即可.
    详解:原式=•﹣1
    =﹣
    =
    当x=+1时,原式==.
    点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.
    21、(1)(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(,﹣1)、(,﹣1)
    【解析】
    (1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;
    (1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;
    (3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.
    【详解】
    (1)∵A(﹣4,0)在二次函数y=ax1﹣x+1(a≠0)的图象上,
    ∴0=16a+6+1,
    解得a=﹣,
    ∴抛物线的函数解析式为y=﹣x1﹣x+1;
    ∴点C的坐标为(0,1),
    设直线AC的解析式为y=kx+b,则

    解得,
    ∴直线AC的函数解析式为:;
    (1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,
    ∴D(m,﹣m1﹣m+1),
    过点D作DH⊥x轴于点H,则DH=﹣m1﹣m+1,AH=m+4,HO=﹣m,
    ∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,
    ∴S=(m+4)×(﹣m1﹣m+1)+(﹣m1﹣m+1+1)×(﹣m),
    化简,得S=﹣m1﹣4m+4(﹣4<m<0);
    (3)①若AC为平行四边形的一边,则C、E到AF的距离相等,
    ∴|yE|=|yC|=1,
    ∴yE=±1.
    当yE=1时,解方程﹣x1﹣x+1=1得,
    x1=0,x1=﹣3,
    ∴点E的坐标为(﹣3,1);
    当yE=﹣1时,解方程﹣x1﹣x+1=﹣1得,
    x1=,x1=,
    ∴点E的坐标为(,﹣1)或(,﹣1);
    ②若AC为平行四边形的一条对角线,则CE∥AF,
    ∴yE=yC=1,
    ∴点E的坐标为(﹣3,1).
    综上所述,满足条件的点E的坐标为(﹣3,1)、(,﹣1)、(,﹣1).

    22、(1)证明见解析;(2)1.
    【解析】
    试题分析:(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可;
    (2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.
    试题解析:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线;
    (2)延长PO交圆于G点,∵PF×PG=,PC=3,PF=1,∴PG=9,∴FG=9﹣1=1,∴AB=FG=1.

    考点:切线的判定;切割线定理.
    23、(1)11.4;(2)19.5m.
    【解析】
    (1)根据直角三角形的性质和三角函数解答即可;
    (2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
    【详解】
    解:(1)在Rt△ABC中,
    ∵∠BAC=64°,AC=5m,
    ∴AB=5÷0.44 11.4 (m);
    故答案为:11.4;
    (2)过点D作DH⊥地面于H,交水平线于点E,

    在Rt△ADE中,
    ∵AD=20m,∠DAE=64°,EH=1.5m,
    ∴DE=sin64°×AD≈20×0.9≈18(m),
    即DH=DE+EH=18+1.5=19.5(m),
    答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
    【点睛】
    本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
    24、
    【解析】
    过点A作,垂足为G,利用三角函数求出CG,从而求出GD,继而求出CD.连接FD并延长与BA的延长线交于点H,利用三角函数求出CH,由图得出EH,再利用三角函数值求出EF.
    【详解】
    过点A作,垂足为G.则,在中,
    ,
    由题意,得,
    ∴,
    连接FD并延长与BA的延长线交于点H. 由题意,得.在中,
    ,
    ∴.
    在中,.
    答:支角钢CD的长为45cm,EF的长为.

    考点:三角函数的应用

    相关试卷

    湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析:

    这是一份湖北省武汉市硚口区市级名校2021-2022学年中考数学模试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析:

    这是一份湖北省襄阳四中学市级名校2021-2022学年中考数学最后冲刺浓缩精华卷含解析,共20页。试卷主要包含了sin60°的值为,-10-4的结果是,下列运算正确的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析:

    这是一份湖北省襄阳市市级名校2021-2022学年中考冲刺卷数学试题含解析,共19页。试卷主要包含了我市连续7天的最高气温为,计算的结果为,如图,内接于,若,则,估计+1的值在等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map