搜索
    上传资料 赚现金
    英语朗读宝

    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)

    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第1页
    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第2页
    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)

    展开

    这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共28页。
    第26章 反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)
    一.选择题(共9小题)
    1.(2022•通辽)如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S△BCD=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是(  )

    A.﹣6 B.﹣6 C.﹣12 D.﹣12
    2.(2021•兴安盟)点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数y=(k>0)的图象上,则(  )
    A.y1>y2>y3 B.y3>y1>y2 C.y2>y1>y3 D.y1>y3>y2
    3.(2021•通辽)定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是(  )
    A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]
    4.(2021•包头)下列命题正确的是(  )
    A.在函数y=﹣中,当x>0时,y随x的增大而减小
    B.若a<0,则1+a>1﹣a
    C.垂直于半径的直线是圆的切线
    D.各边相等的圆内接四边形是正方形
    5.(2020•赤峰)如图,点B在反比例函数y=(x>0)的图象上,点C在反比例函数y=﹣(x>0)的图象上,且BC∥y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为(  )

    A.3 B.4 C.5 D.6
    6.(2020•呼伦贝尔)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是(  )

    A. B.
    C. D.
    7.(2020•包头)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为(  )

    A. B. C. D.
    8.(2020•呼和浩特)在同一坐标系中,若正比例函数y=k1x与反比例函数y=的图象没有交点,则k1与k2的关系,下面四种表述①k1+k2≤0;②|k1+k2|<|k1|或|k1+k2|<|k2|;③|k1+k2|<|k1﹣k2|;④k1k2<0.正确的有(  )
    A.4个 B.3个 C.2个 D.1个
    9.(2020•通辽)如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB∥x轴,则k的值是(  )

    A.18 B.50 C.12 D.
    二.填空题(共5小题)
    10.(2022•呼和浩特)点(2a﹣1,y1)、(a,y2)在反比例函数y=(k>0)的图象上,若0<y1<y2,则a的取值范围是    .
    11.(2021•呼和浩特)正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2=   .
    12.(2021•通辽)如图,△OA1B1,△A1A2B2,△A2A3B3,…,△An﹣1AnBn都是斜边在x轴上的等腰直角三角形,点A1,A2,A3,…,An都在x轴上,点B1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,则点Bn的坐标为    .(用含有正整数n的式子表示)

    13.(2020•鄂尔多斯)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为   .

    14.(2020•呼伦贝尔)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线y=x﹣1分别与边AB,OA相交于D,M两点,反比例函数y=(x>0)的图象经过点D并与边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是   .

    三.解答题(共7小题)
    15.(2022•鄂尔多斯)如图,已知一次函数y=ax+b与反比例函数y=(x<0)的图象交于A(﹣2,4),B(﹣4,2)两点,且与x轴和y轴分别交于点C、点D.
    (1)根据图象直接写出不等式<ax+b的解集;
    (2)求反比例函数与一次函数的解析式;
    (3)点P在y轴上,且S△AOP=S△AOB,请求出点P的坐标.

    16.(2022•呼和浩特)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A、B两点,且A点的横坐标为1,过点B作BE∥x轴,AD⊥BE于点D,点C(,﹣)是直线BE上一点,且AC=CD.
    (1)求一次函数与反比例函数的解析式;
    (2)根据图象,请直接写出不等式kx+b﹣<0的解集.

    17.(2022•赤峰)阅读下列材料
    定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.
    例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.
    完成下列任务
    (1)①min|(﹣3)0,2|=   ;
    ②min|﹣,﹣4|=   .
    (2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.

    18.(2020•呼和浩特)已知自变量x与因变量y1的对应关系如表呈现的规律.
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    12
    11
    10
    9
    8

    (1)直接写出函数解析式及其图象与x轴和y轴的交点M,N的坐标;
    (2)设反比例函数y2=(k>0)的图象与(1)求得的函数的图象交于A,B两点,O为坐标原点且S△AOB=30,求反比例函数解析式;已知a≠0,点(a,y2)与(a,y1)分别在反比例函数与(1)求得的函数的图象上,直接写出y2与y1的大小关系.
    19.(2020•赤峰)阅读理解:
    材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.
    材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=﹣,x1•x2=.
    问题解决:
    (1)请你写出三个能构成“和谐三数组”的实数   ;
    (2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;
    (3)若A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.
    20.(2021•鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.
    (1)求反比例函数的解析式;
    (2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.

    21.(2020•鄂尔多斯)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
    (1)求函数y=kx+b和y=的表达式;
    (2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.


    第26章 反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古)
    参考答案与试题解析
    一.选择题(共9小题)
    1.(2022•通辽)如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S△BCD=,若反比例函数y=(x<0)的图象经过C,D两点,则k的值是(  )

    A.﹣6 B.﹣6 C.﹣12 D.﹣12
    【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,
    ∵四边形OABC为平行四边形,
    ∴AB∥OC,AB=OC,
    ∴∠COE=∠ABD,
    ∵BD与y轴平行,
    ∴∠ADB=90°,
    在△COE和△ABD中,

    ∴△COE≌△ABD(AAS),
    ∴OE=BD=,
    ∵S△BDC=BD•CF=,
    ∴CF=9,
    ∵∠BDC=120°,
    ∴∠CDF=60°,
    ∴DF=3,
    点D的纵坐标为4,
    设C(m,),则D(m+9,4),
    ∵反比例函数y=(x<0)的图象经过C,D两点,
    ∴k=m=4(m+9),
    ∴m=﹣12,
    ∴k=﹣12,
    故选:C.

    2.(2021•兴安盟)点(﹣5,y1),(﹣3,y2),(3,y3)都在反比例函数y=(k>0)的图象上,则(  )
    A.y1>y2>y3 B.y3>y1>y2 C.y2>y1>y3 D.y1>y3>y2
    【解答】解:∵反比例函数y=中k>0,
    ∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.
    ∵﹣5<﹣3<0,
    ∴0>y1>y2,
    ∵3>0,
    ∴y3>0,
    ∴y3>y1>y2,
    故选:B.
    3.(2021•通辽)定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是(  )
    A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]
    【解答】解:将一次函数y=﹣2x+m向上平移3个单位长度后得到y=﹣2x+m+3,
    设A(x1,0),B(x2,0),
    联立,
    ∴2x2﹣(m+3)x﹣3=0,
    ∵x1和x2是方程的两根,
    ∴,
    又∵A,B两点关于原点对称,
    ∴x1+x2=0,
    ∴,
    ∴m=﹣3,
    根据定义,一次函数y=﹣2x+m的特征数是[﹣2,﹣3],
    解法二:由定义可知,一次函数y=﹣2x+m的特征数是[﹣2,m],
    故排除A,B.
    ∵反比例函数y=﹣的图形是中心对称图形,对称中心是原点,
    ∴一次函数y=﹣2x+m的图象向上平移3个单位长度后并经过原点时,与反比例函数的交点关于原点对称,
    ∴m+3=0,即m=﹣3,
    ∴一次函数的特征数为[﹣2,﹣3].
    故选:D.
    4.(2021•包头)下列命题正确的是(  )
    A.在函数y=﹣中,当x>0时,y随x的增大而减小
    B.若a<0,则1+a>1﹣a
    C.垂直于半径的直线是圆的切线
    D.各边相等的圆内接四边形是正方形
    【解答】解:A、在函数y=﹣中k=﹣<0,当x>0时,y随x的增大而增大,故原命题错误,不符合题意;
    B、若a<0,则1+a<1﹣a,故原命题错误,不符合题意;
    C、垂直于半径且经过半径的外端的直线是圆的切线,故原命题错误,不符合题意;
    D、各边相等的圆内接四边形是正方形,正确,是真命题,符合题意,
    故选:D.
    5.(2020•赤峰)如图,点B在反比例函数y=(x>0)的图象上,点C在反比例函数y=﹣(x>0)的图象上,且BC∥y轴,AC⊥BC,垂足为点C,交y轴于点A.则△ABC的面积为(  )

    A.3 B.4 C.5 D.6
    【解答】解:过B点作BH⊥y轴于H点,BC交x轴于D,如图,
    ∵BC∥y轴,AC⊥BC,
    ∴四边形ACDO和四边形ODBH都是矩形,
    ∴S矩形OACD=|﹣2|=2,
    S矩形ODBH=|6|=6,
    ∴S矩形ACBH=2+6=8,
    ∴△ABC的面积=S矩形ACBH=4.
    故选:B.

    6.(2020•呼伦贝尔)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则反比例函数y=与一次函数y=﹣cx+b在同一平面直角坐标系内的图象可能是(  )

    A. B.
    C. D.
    【解答】解:根据二次函数图象与y轴的交点可得c>0,根据抛物线开口向下可得a<0,由对称轴在y轴右边可得a、b异号,故b>0,
    则反比例函数的图象在第二、四象限,
    一次函数y=﹣cx+b经过第一、二、四象限,
    故选:C.
    7.(2020•包头)如图,在平面直角坐标系中,直线y=﹣x+3与x轴、y轴分别交于点A和点B,C是线段AB上一点.过点C作CD⊥x轴,垂足为D,CE⊥y轴,垂足为E,S△BEC:S△CDA=4:1,若双曲线y=(x>0)经过点C,则k的值为(  )

    A. B. C. D.
    【解答】解:∵直线y=﹣x+3与x轴、y轴分别交于点A和点B,
    ∴A(2,0),B(0,3),即:OA=2,OB=3;
    ∵S△BEC:S△CDA=4:1,又△BEC∽△CDA,
    ∴==,
    设EC=a=OD,CD=b=OE,则AD=a,BE=2b,
    有,OA=2=a+a,解得,a=,
    OB=3=3b,解得,b=1,
    ∴k=ab=,
    故选:A.

    8.(2020•呼和浩特)在同一坐标系中,若正比例函数y=k1x与反比例函数y=的图象没有交点,则k1与k2的关系,下面四种表述①k1+k2≤0;②|k1+k2|<|k1|或|k1+k2|<|k2|;③|k1+k2|<|k1﹣k2|;④k1k2<0.正确的有(  )
    A.4个 B.3个 C.2个 D.1个
    【解答】解:∵同一坐标系中,正比例函数y=k1x与反比例函数y=的图象没有交点,若k1>0,则正比例函数经过一、三象限,从而反比例函数经过二、四象限,
    则k2<0,
    若k1<0,则正比例函数经过二、四象限,从而反比例函数经过一、三象限,
    则k2>0,
    综上:k1和k2异号,
    ①∵k1和k2的绝对值的大小未知,故k1+k2≤0不一定成立,故①错误;
    ②|k1+k2|=||k1|﹣|k2||<|k1|或|k1+k2|=||k1|﹣|k2||<|k2|,故②正确;
    ③|k1+k2|=||k1|﹣|k2||<||k1|+|k2||=|k1﹣k2|,故③正确;
    ④∵k1和k2异号,则k1k2<0,故④正确;
    故正确的有3个,
    故选:B.
    9.(2020•通辽)如图,OC交双曲线y=于点A,且OC:OA=5:3,若矩形ABCD的面积是8,且AB∥x轴,则k的值是(  )

    A.18 B.50 C.12 D.
    【解答】解:延长DA、交x轴于E,
    ∵四边形ABCD是矩形,且AB∥x轴,
    ∴∠CAB=∠AOE,
    ∴DE⊥x轴,CB⊥x轴,
    ∴∠AEO=∠ABC
    ∴△AOE∽△CAB,
    ∴=()2,
    ∵矩形ABCD的面积是8,OC:OA=5:3,
    ∴△ABC的面积为4,AC:OA=2:3,
    ∴=()2=,
    ∴S△AOE=9,
    ∵双曲线y=经过点A,
    ∴S△AOE=|k|=9,
    ∵k>0,
    ∴k=18,
    故选:A.

    二.填空题(共5小题)
    10.(2022•呼和浩特)点(2a﹣1,y1)、(a,y2)在反比例函数y=(k>0)的图象上,若0<y1<y2,则a的取值范围是  a>1 .
    【解答】解:∵k>0,
    ∴反比例函数y=(k>0)的图象在一、三象限,在每个象限,y随x的增大而减小,
    ∵0<y1<y2,
    ∴点(2a﹣1,y1)、(a,y2)都在第一象限,
    ∴2a﹣1>a,
    解得:a>1,
    故答案为:a>1.
    11.(2021•呼和浩特)正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2= ﹣8 .
    【解答】解:∵正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),
    ∴﹣2=k1,﹣2=,
    ∴k1=﹣2,k2=﹣6,
    ∴k1+k2=﹣8,
    故答案为﹣8.
    12.(2021•通辽)如图,△OA1B1,△A1A2B2,△A2A3B3,…,△An﹣1AnBn都是斜边在x轴上的等腰直角三角形,点A1,A2,A3,…,An都在x轴上,点B1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,则点Bn的坐标为  (+,﹣+) .(用含有正整数n的式子表示)

    【解答】解:过B1作B1M1⊥x轴于M1,
    易知M1(1,0)是OA1的中点,
    ∴A1(2,0).
    可得B1的坐标为(1,1),
    ∴B1O的解析式为:y=x,
    ∵B1O∥A1B2,
    ∴A1B2的表达式一次项系数与B1O的一次项系数相等,
    将A1(2,0)代入y=x+b,
    ∴b=﹣2,
    ∴A1B2的表达式是y=x﹣2,
    与y=(x>0)联立,解得B2(1+,﹣1+).
    仿上,A2(2,0).
    B3(+,﹣+),
    以此类推,点Bn的坐标为(+,﹣+),
    故答案为(+,﹣+).

    13.(2020•鄂尔多斯)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为 12 .

    【解答】解:解法一:过点A作x轴的垂线,交CB的延长线于点E,

    ∵BC∥x轴,
    ∴AE⊥BC,
    ∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,
    ∴A(,6),B(,4),
    ∴AE=2,BE=﹣=,
    ∵菱形ABCD的面积为2,
    ∴BC×AE=2,即BC=,
    ∴AB=BC=,
    在Rt△AEB中,BE===1,
    ∴k=1,
    ∴k=12.
    解法二:同理知:BE=1,
    设A(a,6),则B(a+1,4),
    ∴6a=4(a+1),
    ∴a=2,
    ∴k=2×6=12.
    故答案为12.
    14.(2020•呼伦贝尔)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的正半轴上.直线y=x﹣1分别与边AB,OA相交于D,M两点,反比例函数y=(x>0)的图象经过点D并与边BC相交于点N,连接MN.点P是直线DM上的动点,当CP=MN时,点P的坐标是 (1,0)或(3,2) .

    【解答】解:∵点C的坐标为(0,3),
    ∴B(3,3),A(3,0),
    ∵直线y=x﹣1分别与边AB,OA相交于D,M两点,
    ∴可得:D(3,2),M(1,0),
    ∵反比例函数经过点D,
    ∴k=3×2=6,
    ∴反比例函数的表达式为,令y=3,
    解得:x=2,
    ∴点N的坐标为(2,3),
    ∴MN==,
    ∵点P在直线DM上,
    设点P的坐标为(m,m﹣1),
    ∴CP=,
    解得:m=1或3,
    ∴点P的坐标为(1,0)或(3,2).
    故答案为:(1,0)或(3,2).
    三.解答题(共7小题)
    15.(2022•鄂尔多斯)如图,已知一次函数y=ax+b与反比例函数y=(x<0)的图象交于A(﹣2,4),B(﹣4,2)两点,且与x轴和y轴分别交于点C、点D.
    (1)根据图象直接写出不等式<ax+b的解集;
    (2)求反比例函数与一次函数的解析式;
    (3)点P在y轴上,且S△AOP=S△AOB,请求出点P的坐标.

    【解答】解:(1)当y=的图象在y=ax+b图象的下方时,<ax+b成立,
    ∴﹣4<x<﹣2.
    (2)将A(﹣2,4)代入y=得:﹣8=m,
    ∴反比例函数为:y=﹣.
    将A(﹣2,4),B(﹣4,2)代入y=ax+b得:,
    解得:,
    ∴一次函数的表达式为:y=x+6.
    (3)在y=x+6中,当y=0时,x=﹣6,
    ∴C(﹣6,0).
    ∴S△ABO=S△AOC﹣S△BOC
    =OC×(yA﹣yB)
    =×6×2
    =6,
    ∴S△AOP=×6=3,
    ∵P在y轴上,
    ∴OP×|xA|=3,
    ∴OP=3.
    ∴P(0,3)或(0.﹣3).
    16.(2022•呼和浩特)如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A、B两点,且A点的横坐标为1,过点B作BE∥x轴,AD⊥BE于点D,点C(,﹣)是直线BE上一点,且AC=CD.
    (1)求一次函数与反比例函数的解析式;
    (2)根据图象,请直接写出不等式kx+b﹣<0的解集.

    【解答】解:(1)∵AD⊥BE于点D,AC=CD.
    ∴cos∠ACD==,
    ∴∠ACD=45°,
    ∴△ADC是等腰直角三角形,
    ∴AD=CD,
    ∵A点的横坐标为1,点C(,﹣),
    ∴CD=﹣1=,
    ∴A(1,﹣),即A(1,2),
    ∵反比例函数y2=的图象过A、B两点,
    ∴m=1×2=2,
    ∴反比例函数的表达式为y2=,
    ∵BE∥x轴,
    ∴B点的纵坐标为﹣,
    ∴B(﹣4,﹣),
    把A、B的坐标代入y1=kx+b得,
    解得,
    ∴一次函数的表达式为y1=x+;

    (2)从图象可以看出,不等式kx+b﹣<0的解集是x<﹣4或0<x<1.
    17.(2022•赤峰)阅读下列材料
    定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.
    例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.
    完成下列任务
    (1)①min|(﹣3)0,2|= 1 ;
    ②min|﹣,﹣4|= ﹣4 .
    (2)如图,已知反比例函数y1=和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.

    【解答】解:(1)由题意可知:①min|(﹣3)0,2|=1,
    ②min|﹣,﹣4|=﹣4;
    故答案为:1,﹣4.
    (2)当﹣2<x<0时,min|,﹣2x+b|=(x+1)(x﹣3)﹣x2=﹣2x﹣3,
    ∵一次函数y2=﹣2x+b,
    ∴b=﹣3,
    ∴y2=﹣2x﹣3,
    当x=﹣2时,y=1,
    ∴A(﹣2,1)
    将A点代入y1=中,得k=﹣2,
    ∴y1=﹣.
    18.(2020•呼和浩特)已知自变量x与因变量y1的对应关系如表呈现的规律.
    x

    ﹣2
    ﹣1
    0
    1
    2

    y1

    12
    11
    10
    9
    8

    (1)直接写出函数解析式及其图象与x轴和y轴的交点M,N的坐标;
    (2)设反比例函数y2=(k>0)的图象与(1)求得的函数的图象交于A,B两点,O为坐标原点且S△AOB=30,求反比例函数解析式;已知a≠0,点(a,y2)与(a,y1)分别在反比例函数与(1)求得的函数的图象上,直接写出y2与y1的大小关系.
    【解答】解:(1)根据表格中数据发现:
    y1和x的和为10,
    ∴y1=10﹣x,
    且当x=0时,y1=10,
    令y1=0,x=10,
    ∴M(10,0),N(0,10);
    (2)设A(m,10﹣m),B(n,10﹣n),
    分别过A和B作x轴的垂线,垂足为C和D,
    ∵点A和点B都在反比例函数图象上,
    ∴S△AOB=S△AOM﹣S△OBM
    =×10×(10﹣m)﹣×10×(10﹣n)
    =30,
    化简得:n﹣m=6,
    联立,得:x2﹣10x+k=0,
    ∴m+n=10,mn=k,
    ∴n﹣m=,
    则,解得:k=16,
    ∴反比例函数解析式为:,
    解x2﹣10x+16=0,得:x=2或8,
    ∴A(2,8),B(8,2),
    ∵(a,y2)在反比例函数上,(a,y1)在一次函数y=10﹣x上,∴当a<0或2<a<8时,y2<y1;
    当0<a<2或a>8时,y2>y1;
    当a=2或8时,y2=y1.

    19.(2020•赤峰)阅读理解:
    材料一:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.
    材料二:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则有x1+x2=﹣,x1•x2=.
    问题解决:
    (1)请你写出三个能构成“和谐三数组”的实数 如 ;
    (2)若x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,x3是关于x的方程bx+c=0(b,c均不为0)的解.求证:x1,x2,x3可以构成“和谐三数组”;
    (3)若A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值.
    【解答】解:(1)根据题意得,能构成“和谐三数组”的实数有,,,;
    理由:的倒数为2,的倒数为3,的倒数为5,而2+3=5,
    ∴能构成“和谐三数组”,
    故答案为:如;

    (2)证明:∵x1,x2是关于x的方程ax2+bx+c=0(a,b,c均不为0)的两根,
    ∴x1+x2=﹣,x1•x2=,
    ∴+==﹣,
    ∵x3是关于x的方程bx+c=0(b,c均不为0)的解,
    ∴x3=﹣,
    ∴=﹣,
    ∴+=,
    ∴x1,x2,x3可以构成“和谐三数组”;

    (3)A(m,y1),B(m+1,y2),C(m+3,y3)三点的纵坐标恰好构成“和谐三数组”,
    ∵A(m,y1),B(m+1,y2),C(m+3,y3)三个点均在反比例函数y=的图象上,
    ∴y1=,y2=,y3=,
    ∴=,=,=,
    ∵A(m,y1),B(m+1,y2),C(m+3,y3)三点的纵坐标恰好构成“和谐三数组”,
    ∴①+=,
    ∴+=,
    ∴m=2,
    ②+=,
    ∴+=,
    ∴m=﹣4,
    ③+=,
    ∴+=,
    ∴m=﹣2,
    即满足条件的实数m的值为2或﹣4或﹣2.
    20.(2021•鄂尔多斯)如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=(k≠0)的图象经过点E,与BC交于点F,且CF﹣BE=1.
    (1)求反比例函数的解析式;
    (2)在y轴上找一点P,使得S△CEP=S矩形ABCD,求此时点P的坐标.

    【解答】解:(1)∵E是AD的中点,
    ∴AE=,
    在Rt△ABE中,由勾股定理得:BE=,
    ∵CF﹣BE=1,
    ∴CF=6,
    ∴F的横坐标为﹣6,
    设F(﹣6,m),则E(﹣4,m+3),
    ∵E,F都在反比例函数图象上,
    ∴﹣6m=﹣4(m+3),
    解得m=6,
    ∴F(﹣6,6),
    ∴k=﹣36,
    ∴反比例函数y=﹣.
    (2)∵S△CEP=S矩形ABCD,
    ∴,
    ∴CP=8,
    ∴P(0,14)或(0,﹣2).
    21.(2020•鄂尔多斯)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
    (1)求函数y=kx+b和y=的表达式;
    (2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.

    【解答】解:(1)把点A(4,3)代入函数y=得:a=3×4=12,
    ∴y=.
    OA==5,
    ∵OA=OB,
    ∴OB=5,
    ∴点B的坐标为(0,﹣5),
    把B(0,﹣5),A(4,3)代入y=kx+b得:

    解得:
    ∴y=2x﹣5.
    (2)方法一:∵点M在一次函数y=2x﹣5上,
    ∴设点M的坐标为(x,2x﹣5),
    ∵MB=MC,

    解得:x=2.5,
    ∴点M的坐标为(2.5,0).方法二:∵B(0,﹣5)、C(0,5),
    ∴BC=10,
    ∴BC的中垂线为:直线y=0,
    当y=0时,2x﹣5=0,即x=2.5,
    ∴点M的坐标为(2.5,0).

    相关试卷

    第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第27章+相似-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。

    第28章+锐角三角例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第28章+锐角三角例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共25页。试卷主要包含了﹣1等内容,欢迎下载使用。

    第29章+投影与视图(选择题)-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古):

    这是一份第29章+投影与视图(选择题)-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共21页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map