所属成套资源:[中考真题】各版本各地区九年级数学上学期期末复习培优练习
第26反比例函数(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
展开
这是一份第26反比例函数(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共22页。试卷主要包含了的图象经过点D,两点,与y轴交于点C,两点,已知,的一个交点为C,且BC=AC,两点,连接OA,OB等内容,欢迎下载使用。
第26反比例函数(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
一.反比例函数图象上点的坐标特征(共1小题)
1.(2021•襄阳)小欣在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:如表是x与y的几组对应值,其中m= ;
x
…
﹣4
﹣3
﹣2
﹣
﹣
﹣
﹣
0
1
2
…
y
…
﹣
﹣
﹣1
﹣2
﹣3
3
2
m
…
②描点:根据表中的数值描点(x,y),请补充描出点(0,m);
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“√”,错误的填“×”)
①函数值y随x的增大而减小: .
②函数图象关于原点对称: .
③函数图象与直线x=﹣1没有交点: .
二.反比例函数与一次函数的交点问题(共10小题)
2.(2022•恩施州)如图,在平面直角坐标系中,O为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=(k≠0)的图象经过点D.
(1)求反比例函数的解析式.
(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.
3.(2022•湖北)如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.
(1)求y1与y2的解析式;
(2)观察图象,直接写出y1<y2时x的取值范围;
(3)连接AD,CD,若△ACD的面积为6,则t的值为 .
4.(2021•随州)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A,B,与反比例函数y2=(m>0)的图象交于点C(1,2),D(2,n).
(1)分别求出两个函数的解析式;
(2)连接OD,求△BOD的面积.
5.(2021•恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
6.(2021•孝感)如图,反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y=的图象于点M,连接CN,OM.若S四边形COMN>3,求t的取值范围.
7.(2020•黄冈)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.
(1)求反比例函数的解析式;
(2)当S△ACO=S△OCD时,求点C的坐标.
8.(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.
(1)求点A的坐标;
(2)当S△AOC=3时,求a和k的值.
9.(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质,其探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是x与y的几组对应值,其中m= ;
x
…
﹣3
﹣2
﹣1
﹣
1
2
3
…
y
…
1
2
4
4
2
m
…
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① ;
② ;
(3)①观察发现:如图2.若直线y=2交函数y=的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC= ;
②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC= ;
③类比猜想:若直线y=a(a>0)交函数y=(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC= .
10.(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.
(1)求一次函数和反比例函数的解析式;
(2)△AOB的面积为 ;
(3)直接写出y1>y2时x的取值范围.
11.(2020•襄阳)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).
(1)m= ,n= ;
(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;
(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 .
第26反比例函数(解答题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北)
参考答案与试题解析
一.反比例函数图象上点的坐标特征(共1小题)
1.(2021•襄阳)小欣在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质.其研究过程如下:
(1)绘制函数图象
①列表:如表是x与y的几组对应值,其中m= 1 ;
x
…
﹣4
﹣3
﹣2
﹣
﹣
﹣
﹣
0
1
2
…
y
…
﹣
﹣
﹣1
﹣2
﹣3
3
2
m
…
②描点:根据表中的数值描点(x,y),请补充描出点(0,m);
③连线:用平滑的曲线顺次连接各点,请把图象补充完整.
(2)探究函数性质
判断下列说法是否正确(正确的填“√”,错误的填“×”)
①函数值y随x的增大而减小: × .
②函数图象关于原点对称: × .
③函数图象与直线x=﹣1没有交点: √ .
【解答】解:(1)①x=0时,y==1,
故答案为:1;
②如图:
∵m=1,
∴A即为(0,m)的点;
③补充图象如图:
(2)根据函数图象可得:
①每一个分支上,函数值y随x的增大而减小,故①错误,应为×,
②图象关于(﹣1,0)对称,故②错误,应为×,
③x=﹣1时,无意义,函数图象与直线x=﹣1没有交点,应为√.
故答案为:×,×,√.
二.反比例函数与一次函数的交点问题(共10小题)
2.(2022•恩施州)如图,在平面直角坐标系中,O为坐标原点,已知∠ACB=90°,A(0,2),C(6,2).D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.反比例函数y1=(k≠0)的图象经过点D.
(1)求反比例函数的解析式.
(2)若AB所在直线解析式为y2=ax+b(a≠0),当y1>y2时,求x的取值范围.
【解答】解:(1)∵A(0,2),C(6,2),
∴AC=6,
∵△ABC是∠C为直角的等腰直角三角形,
∴BC=AC=6,
∵D为等腰直角三角形ABC的边BC上一点,且S△ABC=3S△ADC.
∴CD=2,
∴D(6,4),
∵反比例函数y1=(k≠0)的图象经过点D,
∴k=6×4=24,
∴反比例函数的解析式为y=;
(2)∵A(0,2),B(6,8),
∴把A、B的坐标代入y2=ax+b得,
解得,
∴y2=x+2,
解得或,
∴两函数的交点为(﹣6,﹣4),(4,6)
∴当y1>y2时,x的取值范围是x<﹣6或0<x<4.
3.(2022•湖北)如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.
(1)求y1与y2的解析式;
(2)观察图象,直接写出y1<y2时x的取值范围;
(3)连接AD,CD,若△ACD的面积为6,则t的值为 2 .
【解答】解:(1)将点A(6,﹣)代入y2=中,
∴m=﹣3,
∴y2=,
∵B(,n)在y2=中,可得n=﹣6,
∴B(,﹣6),
将点A、B代入y1=kx+b,
∴,
解得,
∴y1=x﹣;
(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6),
∴<x<6时,y1<y2;
(3)在y1=x﹣中,令x=0,则y=﹣,
∴C(0,﹣),
∵直线AB沿y轴向上平移t个单位长度,
∴直线DE的解析式为y=x﹣+t,
∴F点坐标为(0,﹣+t),
过点F作GF⊥AB于点G,连接AF,
直线AB与x轴交点为(,0),与y轴交点C(0,﹣),
∴∠OCA=45°,
∴FG=CG,
∵FC=t,
∴FG=t,
∵A(6,﹣),C(0,﹣),
∴AC=6,
∵AB∥DF,
∴S△ACD=S△ACF,
∴×6×t=6,
∴t=2,
故答案为:2.
4.(2021•随州)如图,一次函数y1=kx+b的图象与x轴、y轴分别交于点A,B,与反比例函数y2=(m>0)的图象交于点C(1,2),D(2,n).
(1)分别求出两个函数的解析式;
(2)连接OD,求△BOD的面积.
【解答】解:(1)由y2=过点C(1,2)和D(2,n)可得:
,
解得:,
故y2=,
又由y1=kx+b过点C(1,2)和D(2,1)可得:
,
解得,
故y1=﹣x+3.
(2)由y1=﹣x+3过点B,可知B(0,3),
故OB=3,
而点D到y轴的距离为2,
∴S△BOD==3.
5.(2021•恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
【解答】解:(1)如图,作AH⊥BC于H,
Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,
∴OC=BC=2,AC=BC×sin30°=2,
∵∠HAC+∠ACO=90°,∠ABC+∠ACO=90°,
∴∠HAC=∠ABC=30°,
∴CH=AC×sin30°=1,AH=AC×cos30°=,
∴OH=OC﹣CH=2﹣1=1,
∴A(1,),
∵双曲线y=经过点A,
∴=,
即k=;
(2)设直线AC的解析式为y=kx+b,
∵A(1,),C(2,0),
∴,
解得,
∴直线AC的解析式为y=﹣x+2,
∵直线AC与双曲线y=﹣在第四象限交于点D,
∴,
解得或,
∵D在第四象限,
∴D(3,﹣),
∴S△ABD=S△ABC+S△BCD=BC•AH+BC•(﹣yD)==4.
6.(2021•孝感)如图,反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点.
(1)求反比例函数和一次函数的解析式;
(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y=的图象于点M,连接CN,OM.若S四边形COMN>3,求t的取值范围.
【解答】解:(1)∵反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点,
∴k=﹣1×3=a×(﹣1),
∴k=﹣3,a=3,
∴点A(3,﹣1),反比例函数的解析式为y=,
由题意可得:,
解得:,
∴一次函数解析式为y=﹣x+2;
(2)∵直线AB交y轴于点C,
∴点C(0,2),
∴S四边形COMN=S△OMN+S△OCN=+×2×t,
∵S四边形COMN>3,
∴+×2×t>3,
∴t>.
7.(2020•黄冈)已知:如图,一次函数的图象与反比例函数的图象交于A,B两点,与y轴正半轴交于点C,与x轴负半轴交于点D,OB=,tan∠DOB=.
(1)求反比例函数的解析式;
(2)当S△ACO=S△OCD时,求点C的坐标.
【解答】解:过点B、A作BM⊥x轴,AN⊥y轴,垂足为点M,N,
(1)在Rt△BOM中,OB=,tan∠DOB=.
设BM=a,则OM=2a,
在Rt△OBM中,由勾股定理得,
BM2+OM2=OB2,
即a2+(2a)2=()2,
解得a=1(取正值)
∴BM=a=1,OM==2a=2,
又点B在第三象限,
∴点B(﹣2,﹣1),
∴k=(﹣2)×(﹣1)=2,
∴反比例函数的关系式为y=;
(2)∵S△ACO=S△OCD,
∴OD=2AN,
又∵△ANC∽△DOC,
∴===,
设AN=a,CN=b,则OD=2a,OC=2b,
∵S△OAN=|k|=1=ON•AN=×3b×a,
∴ab=①,
由△BMD∽△CNA得,
∴=,即=,也就是a=②,
由①②可求得b=1,b=﹣(舍去),
∴OC=2b=2,
∴点C(0,2).
8.(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.
(1)求点A的坐标;
(2)当S△AOC=3时,求a和k的值.
【解答】解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,
即ax﹣3a=0,解得x=3,
∴点A的坐标为(3,0),
故答案为(3,0).
(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:
显然,CM∥OA,
∴∠BCM=∠BAO,且∠ABO=∠CBO,
∴△BCM∽△BAO,
∴,即:,
∴CM=1,
又
即:,
∴CN=2,
∴C点的坐标为(1,2),
故反比例函数的k=1×2=2,
再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,
即2=a﹣3a,解得a=﹣1,
∴当S△AOC=3时,a=﹣1,k=2.
9.(2020•荆州)九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数y=的图象与性质,其探究过程如下:
(1)绘制函数图象,如图1.
列表:下表是x与y的几组对应值,其中m= 1 ;
x
…
﹣3
﹣2
﹣1
﹣
1
2
3
…
y
…
1
2
4
4
2
m
…
描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;
连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;
(2)通过观察图1,写出该函数的两条性质;
① 函数的图象关于y轴对称 ;
② 当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小 ;
(3)①观察发现:如图2.若直线y=2交函数y=的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C.则S四边形OABC= 4 ;
②探究思考:将①中“直线y=2”改为“直线y=a(a>0)”,其他条件不变,则S四边形OABC= 4 ;
③类比猜想:若直线y=a(a>0)交函数y=(k>0)的图象于A,B两点,连接OA,过点B作BC∥OA交x轴于C,则S四边形OABC= 2k .
【解答】解:(1)当x<0时,xy=﹣2,而当x>0时,xy=2,
∴m=1,
故答案为:1;补全图象如图所示:
(2)由函数图象的对称性可知,函数的图象关于y轴对称,
从函数的增减性可知,在y轴的左侧(x<0),y随x的增大而增大;在y轴的右侧(x>0),y随x的增大而减小;
故答案为:①函数的图象关于y轴对称,②当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小;
(3)如图,①由A,B两点关于y轴对称,由题意可得四边形OABC是平行四边形,且S四边形OABC=4S△OAM=4×|k|=2|k|=4,
②同①可知:S四边形OABC=2|k|=4,
③S四边形OABC=2|k|=2k,
故答案为:4,4,2k.
10.(2020•咸宁)如图,已知一次函数y1=kx+b与反比例函数y2=的图象在第一、三象限分别交于A(6,1),B(a,﹣3)两点,连接OA,OB.
(1)求一次函数和反比例函数的解析式;
(2)△AOB的面积为 8 ;
(3)直接写出y1>y2时x的取值范围.
【解答】解:(1)把A(6,1)代入y2=中,
解得:m=6,
故反比例函数的解析式为y2=;
把B(a,﹣3)代入y2=,解得a=﹣2,
故B(﹣2,﹣3),
把A(6,1),B(﹣2,﹣3)代入y1=kx+b,
得,解得:,
故一次函数解析式为y1=x﹣2;
(2)如图,设一次函数y1=x﹣2与x轴交于点C,
令y=0,得x=4.
∴点C的坐标是(4,0),
∴S△AOB=S△AOC+S△BOC=×4×1+×4×3=8.
故答案为8;
(3)由图象可知,当﹣2<x<0或x>6时,直线y1=kx+b落在双曲线y2=上方,即y1>y2,
所以y1>y2时x的取值范围是﹣2<x<0或x>6.
11.(2020•襄阳)如图,反比例函数y1=(x>0)和一次函数y2=kx+b的图象都经过点A(1,4)和点B(n,2).
(1)m= 4 ,n= 2 ;
(2)求一次函数的解析式,并直接写出y1<y2时x的取值范围;
(3)若点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,则△POM的面积为 2 .
【解答】解:(1)∵把A(1,4)代入y1=(x>0)得:m=1×4=4,
∴y=,
∵把B(n,2)代入y=得:2=,
解得n=2;
故答案为4,2;
(2)把A(1,4)、B(2,2)代入y2=kx+b得:,
解得:k=﹣2,b=6,
即一次函数的解析式是y=﹣2x+6.
由图象可知:y1<y2时x的取值范围是1<x<2;
(3)∵点P是反比例函数y1=(x>0)的图象上一点,过点P作PM⊥x轴,垂足为M,
∴S△POM=|m|==2,
故答案为2.
相关试卷
这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(内蒙古),共28页。
这是一份第26章+反比例函数-【人教版-中考真题】九年级数学下册期末复习培优练习(贵州),共29页。
这是一份第26章反比例函数-【人教版-中考真题】九年级数学上学期期末复习培优练习(黑龙江),共24页。