|试卷下载
终身会员
搜索
    上传资料 赚现金
    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习
    立即下载
    加入资料篮
    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习01
    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习02
    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习03
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习

    展开
    这是一份第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共29页。

    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习
    一.垂径定理(共1小题)
    1.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为(  )
    A.6 B.9 C.12 D.15
    二.圆周角定理(共7小题)
    2.(2022•枣庄)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是(  )

    A.28° B.30° C.36° D.56°
    3.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是(  )

    A.30° B.25° C.20° D.10°
    4.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为(  )

    A.2 B.3 C.2 D.
    5.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为(  )

    A.32° B.42° C.52° D.62°
    6.(2021•聊城)如图,A,B,C是半径为1的⊙O上的三个点,若AB=,∠CAB=30°,则∠ABC的度数为(  )

    A.95° B.100° C.105° D.110°
    7.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是(  )

    A.10° B.20° C.30° D.40°
    8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为(  )

    A.99° B.108° C.110° D.117°
    三.圆内接四边形的性质(共1小题)
    9.(2021•泰安)如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为(  )

    A.2﹣2 B.3﹣ C.4﹣ D.2
    四.点与圆的位置关系(共1小题)
    10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为(  )

    A.+1 B.+ C.2+1 D.2﹣
    五.三角形的外接圆与外心(共2小题)
    11.(2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为(  )

    A. B. C. D.
    12.(2020•泰安)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为(  )

    A.4 B.4 C. D.2
    六.切线的性质(共4小题)
    13.(2021•青岛)如图,AB是⊙O的直径,点E,C在⊙O上,点A是的中点,过点A画⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=58.5°,则∠ACE的度数为(  )

    A.29.5° B.31.5° C.58.5° D.63°
    14.(2021•临沂)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为(  )

    A.110° B.120° C.125° D.130°
    15.(2021•泰安)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是(  )

    A.50° B.48° C.45° D.36°
    16.(2020•泰安)如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于(  )

    A.20° B.25° C.30° D.50°
    七.三角形的内切圆与内心(共1小题)
    17.(2020•济宁)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是(  )

    A.4 B.2 C.2 D.4
    八.正多边形和圆(共2小题)
    18.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为(  )

    A.30° B.36° C.45° D.60°
    19.(2020•德州)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为(  )

    A.24﹣4π B.12+4π C.24+8π D.24+4π
    九.扇形面积的计算(共5小题)
    20.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为(  )

    A.6π﹣9 B.12π﹣9 C.6π﹣ D.12π﹣
    21.(2021•德州)如图,在矩形ABCD中,AB=2,BC=4,以点A为圆心,AD长为半径画弧交BC于点E,连接AE,则阴影部分的面积为(  )

    A.6﹣ B.4﹣ C.6﹣ D.6﹣
    22.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为(  )

    A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
    23.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为(  )

    A.6π﹣ B.12π﹣9 C.3π﹣ D.9
    24.(2020•聊城)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是(  )

    A.π B.2π C.3π D.4π
    一十.圆锥的计算(共4小题)
    25.(2022•东营)用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为(  )
    A.4cm B.8cm C.12cm D.16cm
    26.(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是(  )
    A.96πcm2 B.48πcm2 C.33πcm2 D.24πcm2
    27.(2020•东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为(  )
    A.π B.2π C.2 D.1
    28.(2020•聊城)如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为(  )

    A.m B.m C.m D.m

    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习
    参考答案与试题解析
    一.垂径定理(共1小题)
    1.(2020•滨州)在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为(  )
    A.6 B.9 C.12 D.15
    【解答】解:如图所示:连接OD,
    ∵直径AB=15,
    ∴BO=7.5,
    ∵OC:OB=3:5,
    ∴CO=4.5,
    ∴DC==6,
    ∴DE=2DC=12.
    故选:C.

    二.圆周角定理(共7小题)
    2.(2022•枣庄)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是(  )

    A.28° B.30° C.36° D.56°
    【解答】解:连接OA,OB.

    由题意,∠AOB=86°﹣30°=56°,
    ∴∠ACB=∠AOB=28°,
    故选:A.
    3.(2022•聊城)如图,AB,CD是⊙O的弦,延长AB,CD相交于点P.已知∠P=30°,∠AOC=80°,则的度数是(  )

    A.30° B.25° C.20° D.10°
    【解答】解:连接BC,
    ∵∠AOC=80°,
    ∴∠ABC=40°,
    ∵∠P=30°,
    ∴∠BCD=10°,
    ∴的度数20°.
    故选:C.

    4.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为(  )

    A.2 B.3 C.2 D.
    【解答】解:方法一:
    连接CO并延长CO交⊙O于点E,连接AE,
    ∵OA=OC,
    ∴∠OAC=∠OCA,
    ∵∠ACD=∠CAB,
    ∴∠ACD=∠ACO,
    ∴AE=AD=2,
    ∵CE是直径,
    ∴∠EAC=90°,
    在Rt△EAC中,AE=2,AC=4,
    ∴EC==2,
    ∴⊙O的半径为.
    方法二:连接BC,
    ∵AB是直径,
    ∴∠ACB=90°,
    ∵∠ACD=∠CAB,
    ∴=,
    ∴AD=BC=2,
    在Rt△ABC中,AB==2,
    ∴圆O的半径为.
    故选:D.


    5.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为(  )

    A.32° B.42° C.52° D.62°
    【解答】解:∵∠A=∠D,∠A=48°,
    ∴∠D=48°,
    ∵∠APD=80°,∠APD=∠B+∠D,
    ∴∠B=∠APD﹣∠D=80°﹣48°=32°,
    故选:A.
    6.(2021•聊城)如图,A,B,C是半径为1的⊙O上的三个点,若AB=,∠CAB=30°,则∠ABC的度数为(  )

    A.95° B.100° C.105° D.110°
    【解答】解:如图,连接OB,

    ∵OA=OB=1,AB=,
    ∴OA2+OB2=AB2,
    ∴∠AOB=90°,
    ∴∠ACB=45°,
    ∴∠ABC=180°﹣45°﹣30°=105°,
    故选:C.
    7.(2020•临沂)如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是(  )

    A.10° B.20° C.30° D.40°
    【解答】解:
    连接BC,延长ED交⊙O于N,连接OD,并延长交⊙O于M,
    ∵∠AOC=80°,
    ∴的度数是80°,
    ∵点D为弦AC的中点,OA=OC,
    ∴∠AOD=∠COD,
    ∴=,
    即M为的中点,
    ∴和的度数都是80°=40°,
    ∵>,
    ∴40°<的度数<80°,
    ∴20°<∠CED<40°,
    ∴选项C符合题意;选项A、选项B、选项D都不符合题意;
    故选:C.
    8.(2020•青岛)如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB的度数为(  )

    A.99° B.108° C.110° D.117°
    【解答】解:∵BD是⊙O的直径,
    ∴∠BAD=90°,
    ∵=,
    ∴∠B=∠D=45°,
    ∵∠DAC=∠COD=×126°=63°,
    ∴∠AGB=∠DAC+∠D=63°+45°=108°.
    故选:B.
    三.圆内接四边形的性质(共1小题)
    9.(2021•泰安)如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为(  )

    A.2﹣2 B.3﹣ C.4﹣ D.2
    【解答】解:延长AD、BC交于E,
    ∵∠BCD=120°,
    ∴∠A=60°,
    ∵∠B=90°,
    ∴∠ADC=90°,∠E=30°,
    在Rt△ABE中,AE=2AB=4,
    在Rt△CDE中,DE==,
    ∴AD=AE﹣DE=4﹣,
    故选:C.

    四.点与圆的位置关系(共1小题)
    10.(2020•泰安)如图,点A,B的坐标分别为A(2,0),B(0,2),点C为坐标平面内一点,BC=1,点M为线段AC的中点,连接OM,则OM的最大值为(  )

    A.+1 B.+ C.2+1 D.2﹣
    【解答】解:如图,
    ∵点C为坐标平面内一点,BC=1,
    ∴C在⊙B上,且半径为1,
    取OD=OA=2,连接CD,

    ∵AM=CM,OD=OA,
    ∴OM是△ACD的中位线,
    ∴OM=CD,
    当OM最大时,即CD最大,而D,B,C三点共线时,当C在DB的延长线上时,OM最大,
    ∵OB=OD=2,∠BOD=90°,
    ∴BD=2,
    ∴CD=2+1,
    ∴OM=CD=,即OM的最大值为+;
    故选:B.
    五.三角形的外接圆与外心(共2小题)
    11.(2021•滨州)如图,⊙O是△ABC的外接圆,CD是⊙O的直径.若CD=10,弦AC=6,则cos∠ABC的值为(  )

    A. B. C. D.
    【解答】解:连接AD,如右图所示,
    ∵CD是⊙O的直径,CD=10,弦AC=6,
    ∴∠DAC=90°,
    ∴AD=====8,
    ∴cos∠ADC===,
    ∵∠ABC=∠ADC,
    ∴cos∠ABC的值为,
    故选:A.

    12.(2020•泰安)如图,△ABC是⊙O的内接三角形,AB=BC,∠BAC=30°,AD是直径,AD=8,则AC的长为(  )

    A.4 B.4 C. D.2
    【解答】解:连接CD,
    ∵AB=BC,∠BAC=30°,
    ∴∠ACB=∠BAC=30°,
    ∴∠B=180°﹣30°﹣30°=120°,
    ∴∠D=180°﹣∠B=60°,
    ∵AD是直径,
    ∴∠ACD=90°,
    ∵∠CAD=30°,AD=8,
    ∴CD=AD=4,
    ∴AC===4,
    故选:B.

    六.切线的性质(共4小题)
    13.(2021•青岛)如图,AB是⊙O的直径,点E,C在⊙O上,点A是的中点,过点A画⊙O的切线,交BC的延长线于点D,连接EC.若∠ADB=58.5°,则∠ACE的度数为(  )

    A.29.5° B.31.5° C.58.5° D.63°
    【解答】解:∵AD是⊙O的切线,
    ∴BA⊥AD,
    ∵∠ADB=58.5°,
    ∴∠B=90°﹣∠ADB=31.5°,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠BAC=90°﹣∠B=58.5°,
    ∵点A是的中点,
    ∴BA⊥EC,
    ∴∠ACE=90°﹣∠BAC=31.5°,
    故选:B.
    14.(2021•临沂)如图,PA、PB分别与⊙O相切于A、B,∠P=70°,C为⊙O上一点,则∠ACB的度数为(  )

    A.110° B.120° C.125° D.130°
    【解答】解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,

    ∵AP、BP是⊙O的切线,
    ∴∠OAP=∠OBP=90°,
    ∴∠AOB=360°﹣90°﹣90°﹣70°=110°,
    ∴∠ADB=AOB=55°,
    又∵圆内接四边形的对角互补,
    ∴∠ACB=180°﹣∠ADB=180°﹣55°=125°.
    故选:C.
    15.(2021•泰安)如图,在△ABC中,AB=6,以点A为圆心,3为半径的圆与边BC相切于点D,与AC,AB分别交于点E和点G,点F是优弧GE上一点,∠CDE=18°,则∠GFE的度数是(  )

    A.50° B.48° C.45° D.36°
    【解答】解:连接AD,∵BC与⊙A相切于点D,
    ∴AD⊥BC,
    ∴∠ADB=∠ADC=90°,
    ∵AB=6,AG=AD=3,
    ∴AD=AB,
    ∴∠B=30°,
    ∴∠GAD=60°,
    ∵∠CDE=18°,
    ∴∠ADE=90°﹣18°=72°,
    ∵AD=AE,
    ∴∠AED=∠ADE=72°,
    ∴∠DAE=180°﹣∠ADE﹣∠AED=180°﹣72°﹣72°=36°,
    ∴∠BAC=∠BAD+∠CAD=60°+36°=96°,
    ∴∠GFE=GAE=96°=48°,
    故选:B.

    16.(2020•泰安)如图,PA是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于(  )

    A.20° B.25° C.30° D.50°
    【解答】解:连接OA,
    ∵PA是⊙O的切线,
    ∴OA⊥AP,
    ∴∠PAO=90°,
    ∴∠AOP=90°﹣∠P=80°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=50°,
    ∵OC∥AB,
    ∴∠BOC=∠OBA=50°,
    由圆周角定理得,∠BAC=∠BOC=25°,
    故选:B.

    七.三角形的内切圆与内心(共1小题)
    17.(2020•济宁)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD=2,BD=4.则△DBC的面积是(  )

    A.4 B.2 C.2 D.4
    【解答】解:过点B作BH⊥CD的延长线于点H.
    ∵点D为△ABC的内心,∠A=60°,
    ∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),
    ∴∠BDC=90°+∠A=90°+×60°=120°,
    则∠BDH=60°,
    ∵BD=4,
    ∴DH=2,BH=2,
    ∵CD=2,
    ∴△DBC的面积=CD•BH==2,
    故选:B.

    八.正多边形和圆(共2小题)
    18.(2022•青岛)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为(  )

    A.30° B.36° C.45° D.60°
    【解答】解:连接OC,OD,OE,
    ∵多边形ABCDEF是正六边形,
    ∴∠COD=∠DOE=60°,
    ∴∠COE=2∠COD=120°,
    ∴∠CME=∠COE=60°,
    故选:D.

    19.(2020•德州)如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为(  )

    A.24﹣4π B.12+4π C.24+8π D.24+4π
    【解答】解:设正六边形的中心为O,连接OA,OB.

    由题意,OA=OB=AB=4,
    ∴S弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,
    ∴S阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,
    故选:A.
    九.扇形面积的计算(共5小题)
    20.(2022•泰安)如图,四边形ABCD中,∠A=60°,AB∥CD,DE⊥AD交AB于点E,以点E为圆心,DE为半径,且DE=6的圆交CD于点F,则阴影部分的面积为(  )

    A.6π﹣9 B.12π﹣9 C.6π﹣ D.12π﹣
    【解答】解:过点E作EG⊥DF交DF于点G,
    ∵∠A=60°,AB∥CD,DE⊥AD交AB于点E,
    ∴∠GDE=∠DEA=30°,
    ∵DE=EF,
    ∴∠EDF=∠EFD=30°,
    ∴∠DEF=120°,
    ∵∠GDE=30°,DE=6,
    ∴GE=3,DG=3,
    ∴DF=6,
    阴影部分的面积=﹣×6×3=12π﹣9,
    故选:B.

    21.(2021•德州)如图,在矩形ABCD中,AB=2,BC=4,以点A为圆心,AD长为半径画弧交BC于点E,连接AE,则阴影部分的面积为(  )

    A.6﹣ B.4﹣ C.6﹣ D.6﹣
    【解答】解:∵四边形ABCD是矩形,AD=BC=4,
    ∴∠B=∠DAB=90°,AD=AE=4,
    ∵AB=2,
    ∴cos∠BAE==,
    ∴∠BAE=30°,∠EAD=60°,
    ∴BE=AE=2,
    ∴阴影部分的面积S=S矩形ABCD﹣S△ABE﹣S扇形EAD
    =2×4﹣××2﹣
    =6﹣.
    故选:A.
    22.(2021•枣庄)如图,正方形ABCD的边长为2,O为对角线的交点,点E,F分别为BC,AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E,F为圆心,1为半径作圆弧BO,OD,则图中阴影部分的面积为(  )

    A.π﹣1 B.π﹣3 C.π﹣2 D.4﹣π
    【解答】解:连接BD,EF,如图,

    ∵正方形ABCD的边长为2,O为对角线的交点,
    由题意可得:EF,BD经过点O,且EF⊥AD,EF⊥CB.
    ∵点E,F分别为BC,AD的中点,
    ∴FD=FO=EO=EB=1,
    ∴,OB=OD.
    ∴弓形OB=弓形OD.
    ∴阴影部分的面积等于弓形BD的面积.
    ∴S阴影=S扇形CBD﹣S△CBD==π﹣2.
    故选:C.
    23.(2020•日照)如图,AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,若CD=6,AE=9,则阴影部分的面积为(  )

    A.6π﹣ B.12π﹣9 C.3π﹣ D.9
    【解答】 解:∵AB是⊙O的直径,CD为⊙O的弦,AB⊥CD于点E,
    ∴CE=DE=.
    设⊙O的半径为r,
    在直角△OED中,OD2=OE2+DE2,即,
    解得,r=6,
    ∴OE=3,
    ∴cos∠BOD===,
    ∴∠EOD=60°,
    ∴,,
    ∴,
    故选:A.

    24.(2020•聊城)如图,AB是⊙O的直径,弦CD⊥AB,垂足为点M,连接OC,DB.如果OC∥DB,OC=2,那么图中阴影部分的面积是(  )

    A.π B.2π C.3π D.4π
    【解答】解:连接OD,BC,
    ∵CD⊥AB,OC=OD,
    ∴DM=CM,∠COB=∠BOD,
    ∵OC∥BD,
    ∴∠COB=∠OBD,
    ∴∠BOD=∠OBD,
    ∴OD=DB,
    ∴△BOD是等边三角形,
    ∴∠BOD=60°,
    ∴∠BOC=60°,
    ∵DM=CM,
    ∴S△OBC=S△OBD,
    ∵OC∥DB,
    ∴S△OBD=S△CBD,
    ∴S△OBC=S△DBC,
    ∴图中阴影部分的面积=扇形COB的面积==2π,
    故选:B.

    一十.圆锥的计算(共4小题)
    25.(2022•东营)用一张半圆形铁皮,围成一个底面半径为4cm的圆锥形工件的侧面(接缝忽略不计),则圆锥的母线长为(  )
    A.4cm B.8cm C.12cm D.16cm
    【解答】解:设半圆形铁皮的半径为rcm,
    根据题意得:πr=2π×4,
    解得:r=8,
    所以围成的圆锥的母线长为8cm,
    故选:B.
    26.(2022•济宁)已知圆锥的母线长8cm,底面圆的直径6cm,则这个圆锥的侧面积是(  )
    A.96πcm2 B.48πcm2 C.33πcm2 D.24πcm2
    【解答】解:∵底面圆的直径为6cm,
    ∴底面圆的半径为3cm,
    ∴圆锥的侧面积=×8×2π×3=24πcm2.
    故选:D.
    27.(2020•东营)用一个半径为3,面积为3π的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为(  )
    A.π B.2π C.2 D.1
    【解答】解:根据圆锥侧面展开图是扇形,
    扇形面积公式:S=πrl(r为圆锥的底面半径,l为扇形半径),得
    3πr=3π,
    ∴r=1.
    所以圆锥的底面半径为1.
    故选:D.
    28.(2020•聊城)如图,有一块半径为1m,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为(  )

    A.m B.m C.m D.m
    【解答】解:设底面半径为rm,则2πr=,
    解得:r=,
    所以其高为:=(m),
    故选:C.
    相关试卷

    第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习: 这是一份第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共20页。

    第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习: 这是一份第5章圆(解答题中档题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共23页。试卷主要包含了已知等内容,欢迎下载使用。

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习: 这是一份第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共18页。试卷主要包含了已知等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map