搜索
    上传资料 赚现金
    英语朗读宝

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习第1页
    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习第2页
    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习

    展开

    这是一份第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共18页。试卷主要包含了已知等内容,欢迎下载使用。
    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习
    一.圆周角定理(共1小题)
    1.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.
    求证:(1)AD∥BC;
    (2)四边形BCDE为菱形.

    二.圆内接四边形的性质(共1小题)
    2.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
    (1)若AB=AC,求证:∠ADB=∠ADE;
    (2)若BC=3,⊙O的半径为2,求sin∠BAC.

    三.切线的性质(共3小题)
    3.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.
    (1)求证:∠D=∠E;
    (2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.

    4.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.
    (1)求证:∠DAB=2∠ABC;
    (2)若tan∠ADC=,BC=4,求⊙O的半径.

    5.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.
    (1)求证:DE⊥AC;
    (2)若⊙O的半径为5,BC=16,求DE的长.

    四.切线的判定与性质(共5小题)
    6.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.
    (1)求证:直线CE是⊙O的切线;
    (2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.

    7.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.
    (1)求证:直线HG是⊙O的切线;
    (2)若HA=3,cosB=,求CG的长.

    8.(2021•东营)如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.
    (1)求证:DF是⊙O的切线;
    (2)求线段OF的长度.

    9.(2021•菏泽)如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.
    (1)求证:FE是⊙O的切线;
    (2)若⊙O的半径为8,sinF=,求BG的长.

    10.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
    (1)求证:BC是⊙O2的切线;
    (2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.

    五.圆锥的计算(共1小题)
    11.(2022•潍坊)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.

    小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”
    你认同小亮的说法吗?请说明理由.

    第5章圆(解答题基础题)-鲁教版(五四制)九年级数学下册期末复习培优练习
    参考答案与试题解析
    一.圆周角定理(共1小题)
    1.(2021•临沂)如图,已知在⊙O中,==,OC与AD相交于点E.
    求证:(1)AD∥BC;
    (2)四边形BCDE为菱形.

    【解答】证明:(1)连接BD,
    ∵,
    ∴∠ADB=∠CBD,
    ∴AD∥BC;

    (2)连接CD,BD,设OC与BD相交于点F,
    ∵AD∥BC,
    ∴∠EDF=∠CBF,
    ∵,
    ∴BC=CD,BF=DF,
    又∠DFE=∠BFC,
    ∴△DEF≌△BCF(ASA),
    ∴DE=BC,
    ∴四边形BCDE是平行四边形,又BC=CD,
    ∴四边形BCDE是菱形.
    二.圆内接四边形的性质(共1小题)
    2.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.
    (1)若AB=AC,求证:∠ADB=∠ADE;
    (2)若BC=3,⊙O的半径为2,求sin∠BAC.

    【解答】(1)证明:∵四边形ABCD是⊙O的内接四边形,
    ∴∠ADE=∠ABC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∵∠ACB=∠ADB,
    ∴∠ADB=∠ADE;
    (2)解:连接CO并延长交⊙O于点F,连接BF,

    则∠FBC=90°,
    在Rt△BCF中,CF=4,BC=3,
    ∴sinF==,
    ∵∠F=∠BAC,
    ∴sin∠BAC=.
    三.切线的性质(共3小题)
    3.(2022•临沂)如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.
    (1)求证:∠D=∠E;
    (2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.

    【解答】(1)证明:连接OB,

    ∵AB是⊙O的切线,
    ∴∠OBE=90°,
    ∴∠E+∠BOE=90°,
    ∵CD为⊙O的直径,
    ∴∠CBD=90°,
    ∴∠D+∠DCB=90°,
    ∵OE∥BC,
    ∴∠BOE=∠OBC,
    ∵OB=OC,
    ∴∠OBC=∠OCB,
    ∴∠BOE=∠OCB,
    ∴∠D=∠E;
    (2)解:∵F为OE的中点,OB=OF,
    ∴OF=EF=3,
    ∴OE=6,
    ∴BO=OE,
    ∵∠OBE=90°,
    ∴∠E=30°,
    ∴∠BOG=60°,
    ∵OE∥BC,∠DBC=90°,
    ∴∠OGB=90°,
    ∴OG=,BG=,
    ∴S△BOG=OG•BG==,S扇形BOF==π,
    ∴S阴影部分=S扇形BOF﹣S△BOG=.
    4.(2021•济南)已知:如图,AB是⊙O的直径,C,D是⊙O上两点,过点C的切线交DA的延长线于点E,DE⊥CE,连接CD,BC.
    (1)求证:∠DAB=2∠ABC;
    (2)若tan∠ADC=,BC=4,求⊙O的半径.

    【解答】(1)证明:连接OC,
    ∵EC是⊙O的切线,
    ∴OC⊥CE,
    ∵DE⊥CE,
    ∴OC∥DE,
    ∴∠DAB=∠AOC,
    由圆周角定理得:∠AOC=2∠ABC,
    ∴∠DAB=2∠ABC;
    (2)解:连接AC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    由圆周角定理得:∠ABC=∠ADC,
    ∴tan∠ABC=tan∠ADC=,即=,
    ∵BC=4,
    ∴AC=2,
    由勾股定理得:AB===2,
    ∴⊙O的半径为.

    5.(2020•菏泽)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.
    (1)求证:DE⊥AC;
    (2)若⊙O的半径为5,BC=16,求DE的长.

    【解答】(1)证明:方法一:连接AD、OD.

    ∵AB是圆O的直径,
    ∴∠ADB=90°.
    ∴∠ADO+∠ODB=90°.
    ∵DE是圆O的切线,
    ∴OD⊥DE.
    ∴∠EDA+∠ADO=90°.
    ∴∠EDA=∠ODB.
    ∵OD=OB,
    ∴∠ODB=∠OBD.
    ∴∠EDA=∠OBD.
    ∵AC=AB,AD⊥BC,
    ∴∠CAD=∠BAD.
    ∵∠DBA+∠DAB=90°,
    ∴∠EAD+∠EDA=90°.
    ∴∠DEA=90°.
    ∴DE⊥AC.
    方法二:∵DE是圆O的切线,
    ∴OD⊥DE,
    ∵AB=AC,
    ∴∠B=∠C,
    ∵OB=OD,
    ∴∠B=∠ODB,
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC;
    (2)解:∵∠ADB=90°,AB=AC,
    ∴BD=CD,
    ∵⊙O的半径为5,BC=16,
    ∴AC=10,CD=8,
    ∴AD==6,
    ∵S△ADC=AC•DE,
    ∴DE===.
    四.切线的判定与性质(共5小题)
    6.(2022•东营)如图,AB为⊙O的直径,点C为⊙O上一点,BD⊥CE于点D,BC平分∠ABD.
    (1)求证:直线CE是⊙O的切线;
    (2)若∠ABC=30°,⊙O的半径为2,求图中阴影部分的面积.

    【解答】(1)证明:∵OB=OC,
    ∴∠OBC=∠OCB,
    ∵BC平分∠ABD,
    ∴∠OBC=∠DBC,
    ∴∠DBC=∠OCB,
    ∴OC∥BD,
    ∵BD⊥CE,
    ∴OC⊥CE,
    ∵OC为⊙O的半径,
    ∴CE是⊙O的切线;
    (2)解:过点O作OH⊥BC于H,
    则BH=HC,
    在Rt△OHB中,∠OBH=30°,OB=2,
    ∴BH=OB•cos∠OBH=2×=,OH=OB=1,
    ∴BC=2,
    ∵OB=OC,
    ∴∠OCB=∠OBC=30°,
    ∴∠BOC=120°,
    ∴S阴影部分=S扇形BOC﹣S△BOC
    =﹣×2×1
    =﹣.

    7.(2022•菏泽)如图,在△ABC中,以AB为直径作⊙O交AC、BC于点D、E,且D是AC的中点,过点D作DG⊥BC于点G,交BA的延长线于点H.
    (1)求证:直线HG是⊙O的切线;
    (2)若HA=3,cosB=,求CG的长.

    【解答】(1)证明:连接OD,
    ∵AD=DC,AO=OB,
    ∴OD是△ABC的中位线,
    ∴OD∥BC,OD=BC,
    ∵DG⊥BC,
    ∴OD⊥HG,
    ∵OD是⊙O的半径,
    ∴直线HG是⊙O的切线;
    (2)解:设⊙O的半径为x,则OH=x+3,BC=2x,
    ∵OD∥BC,
    ∴∠HOD=∠B,
    ∴cos∠HOD=,即==,
    解得:x=2,
    ∴BC=4,BH=7,
    ∵cosB=,
    ∴=,即=,
    解得:BG=,
    ∴CG=BC﹣BG=4﹣=.

    8.(2021•东营)如图,以等边三角形ABC的BC边为直径画圆,交AC于点D,DF⊥AB于点F,连接OF,且AF=1.
    (1)求证:DF是⊙O的切线;
    (2)求线段OF的长度.

    【解答】(1)证明:连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=60o,
    ∵OC=OD,
    ∴△OCD是等边三角形,
    ∴∠CDO=∠A=60o,
    ∴OD∥AB,
    ∵DF⊥AB,
    ∴∠FDO=∠AFD=90°,
    ∴OD⊥DF,
    ∴DF是⊙O的切线;
    (2)解:∵OD∥AB,OC=OB,
    ∴OD是△ABC的中位线,
    ∵∠AFD=90°,∠A=60o,
    ∴∠ADF=30°,
    ∵AF=1
    ∴CD=OD=AD=2AF=2,
    在Rt△ADF中,由勾股定理得DF2=AD2﹣AF2=3,
    在Rt△ODF中,由勾股定理得OF=,
    ∴线段OF的长为.
    9.(2021•菏泽)如图,在⊙O中,AB是直径,弦CD⊥AB,垂足为H,E为上一点,F为弦DC延长线上一点,连接FE并延长交直径AB的延长线于点G,连接AE交CD于点P,若FE=FP.
    (1)求证:FE是⊙O的切线;
    (2)若⊙O的半径为8,sinF=,求BG的长.

    【解答】解:(1)如图,连接OE,

    ∵OA=OE,
    ∴∠A=∠AEO,
    ∵CD⊥AB,
    ∴∠AHP=90°,
    ∵FE=FP,
    ∴∠FPE=∠FEP,
    ∵∠A+∠APH=∠A+∠FPE=90°,
    ∴∠FEP+∠AEO=90°=∠FEO,
    ∴OE⊥EF,
    ∴FE是⊙O的切线;
    (2)∵∠FHG=∠OEG=90°,
    ∴∠G+∠EOG=90°=∠G+∠F,
    ∴∠F=∠EOG,
    ∴sinF=sin∠EOG==,
    设EG=3x,OG=5x,
    ∴OE===4x,
    ∵OE=8,
    ∴x=2,
    ∴OG=10,
    ∴BG=10﹣8=2.
    10.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
    (1)求证:BC是⊙O2的切线;
    (2)若r1=2,r2=1,O1O2=6,求阴影部分的面积.

    【解答】(1)证明:连接AP,

    ∵以线段O1O2的中点P为圆心,以O1O2的长为半径画弧,
    ∴O1P=AP=O2P=,
    ∴∠O1AO2=90°,
    ∵BC∥O2A,
    ∴∠O1BC=∠O1AO2=90°,
    过点O2作O2D⊥BC交BC的延长线于点D,
    ∴四边形ABDO2是矩形,
    ∴AB=O2D,
    ∵O1A=r1+r2,
    ∴O2D=r2,
    ∴BC是⊙O2的切线;
    (2)解:∵r1=2,r2=1,O1O2=6,
    ∴O1A=,
    ∴∠AO2C=30°,
    ∵BC∥O2A,
    ∴∠BCE=AO2C=30°,
    ∴O1C=2O1B=4,
    ∴BC===2,
    ∴S阴影===﹣=2﹣π.
    五.圆锥的计算(共1小题)
    11.(2022•潍坊)在数学实验课上,小莹将含30°角的直角三角尺分别以两个直角边为轴旋转一周,得到甲、乙两个圆锥,并用作图软件Geogebra画出如下示意图.

    小亮观察后说:“甲、乙圆锥的侧面都是由三角尺的斜边AB旋转得到,所以它们的侧面积相等.”
    你认同小亮的说法吗?请说明理由.
    【解答】解:小亮的说法不正确.
    设直角三角尺三边长分别为BC=a,AC=a,AB=2a,
    ∴甲圆锥的侧面积:S甲=π•BC•AB=π×a×2a=2πα2
    乙圆锥的侧面积:S乙=π•AC•AB=π×a×2a=2πa2,
    ∴S甲≠S乙,
    ∴小亮的说法不正确

    相关试卷

    第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习:

    这是一份第3章二次函数(解答题压轴题)-鲁教版(五四制)九年级数学上学期期末复习培优练习,共47页。试卷主要包含了x﹣1与x轴有公共点,探索发现,两点,与y轴交于点C,连接BC,,连接AC,BC等内容,欢迎下载使用。

    第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(填空题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共20页。

    第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习:

    这是一份第5章圆(选择题)-鲁教版(五四制)九年级数学下册期末复习培优练习,共29页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map