搜索
    上传资料 赚现金
    英语朗读宝

    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)

    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)第1页
    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)第2页
    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)

    展开

    这是一份第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共20页。
    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
    一.圆的认识(共1小题)
    1.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是(  )

    A.3 B.4 C.5 D.6
    二.圆周角定理(共4小题)
    2.(2021•常州)如图,BC是⊙O的直径,AB是⊙O的弦,若∠AOC=60°,则∠OAB的度数是(  )

    A.20° B.25° C.30° D.35°
    3.(2020•无锡)如图,CD是⊙O的直径,弦DE∥AO,若∠D的度数为60°,则∠C的度数为(  )

    A.20° B.30° C.40° D.50°
    4.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于(  )

    A.10° B.14° C.16° D.26°
    5.(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是(  )

    A.54° B.27° C.36° D.108°
    三.切线的性质(共5小题)
    6.(2022•镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为(  )

    A.1 B.2 C.3 D.4
    7.(2022•无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是(  )

    A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°
    8.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于(  )

    A.27° B.29° C.35° D.37°
    9.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于(  )

    A.75° B.70° C.65° D.60°
    10.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是(  )

    A.(9,2) B.(9,3) C.(10,2) D.(10,3)
    四.正多边形和圆(共2小题)
    11.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的(  )

    A.27倍 B.14倍 C.9倍 D.3倍
    12.(2020•连云港)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心(  )

    A.△AED B.△ABD C.△BCD D.△ACD
    五.扇形面积的计算(共3小题)
    13.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为(  )

    A.π﹣ B.π﹣ C.π﹣2 D.π﹣
    14.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为(  )

    A.10π B.9π C.8π D.6π
    15.(2020•苏州)如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为(  )

    A.π﹣1 B.﹣1 C.π﹣ D.﹣
    六.圆锥的计算(共3小题)
    16.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为(  )
    A.12π B.15π C.20π D.24π
    17.(2021•镇江)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积(  )
    A.有最大值π B.有最小值π
    C.有最大值π D.有最小值π
    18.(2020•南通)如图是一个几何体的三视图(图中尺寸单位:cm),则这个几何体的侧面积为(  )

    A.48πcm2 B.24πcm2 C.12πcm2 D.9πcm2

    第2章对称图形-圆选择题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏)
    参考答案与试题解析
    一.圆的认识(共1小题)
    1.(2020•常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是(  )

    A.3 B.4 C.5 D.6
    【解答】解:∵CH⊥AB,垂足为H,
    ∴∠CHB=90°,
    ∵点M是BC的中点.
    ∴MH=BC,
    ∵BC的最大值是直径的长,⊙O的半径是3,
    ∴MH的最大值为3,
    故选:A.
    二.圆周角定理(共4小题)
    2.(2021•常州)如图,BC是⊙O的直径,AB是⊙O的弦,若∠AOC=60°,则∠OAB的度数是(  )

    A.20° B.25° C.30° D.35°
    【解答】解:∵∠AOC=60°,
    ∴∠B=∠AOC=30°,
    ∵OA=OB,
    ∴∠OAB=∠B=30°,
    故选:C.
    3.(2020•无锡)如图,CD是⊙O的直径,弦DE∥AO,若∠D的度数为60°,则∠C的度数为(  )

    A.20° B.30° C.40° D.50°
    【解答】解:∵弦DE∥AO,∠D的度数为60°,
    ∴∠AOD=∠D=60°,
    ∴∠C=∠AOD=30°(一条弧所对的圆周角等于它所对的圆心角的一半),
    故选:B.
    4.(2020•镇江)如图,AB是半圆的直径,C、D是半圆上的两点,∠ADC=106°,则∠CAB等于(  )

    A.10° B.14° C.16° D.26°
    【解答】解:连接BD,如图,
    ∵AB是半圆的直径,
    ∴∠ADB=90°,
    ∴∠BDC=∠ADC﹣∠ADB=106°﹣90°=16°,
    ∴∠CAB=∠BDC=16°.
    故选:C.

    5.(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是(  )

    A.54° B.27° C.36° D.108°
    【解答】解:∵∠ACB=54°,
    ∴圆心角∠AOB=2∠ACB=108°,
    ∵OB=OA,
    ∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,
    故选:C.
    三.切线的性质(共5小题)
    6.(2022•镇江)如图,在等腰△ABC中,∠BAC=120°,BC=6,⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3.将△ABC绕点A按顺时针方向旋转α(0°<α≤360°),B、C的对应点分别为B′、C′,在旋转的过程中边B′C′所在直线与⊙O相切的次数为(  )

    A.1 B.2 C.3 D.4
    【解答】解:如图1,由题意可知⊙O同时与边BA的延长线、射线AC相切,⊙O的半径为3,
    设⊙O与边BA的延长线、射线AC分别相切于点T、点G,连接OA交⊙O于点L,连接OT,
    ∴AT⊥OT,OT=3,
    作AE⊥BC于点E,OH⊥BC于点H,则∠AEB=90°,
    ∵AB=AC,∠BAC=120°,BC=6,
    ∴BE=CE=BC=3,∠B=∠ACB=(∠180﹣∠BAC)=30°,
    ∴AE=BE•tan30°=3×=3,
    ∵∠TAC=180°﹣∠BAC=60°,
    ∴∠OAG=∠OAT=∠TAC=30°,
    ∴∠OAG=∠ACB,
    ∴OA∥BC,
    ∴OH=AE=OT=OL=3,
    ∴直线BC与⊙O相切,
    ∵∠ATO=90°,
    ∴OA=2OT=6,
    ∴AL=3,
    作AK⊥B′C′于点K,由旋转得AK=AE=3,∠AKB′=∠AEB=90°,
    如图2,△ABC绕点A旋转到点K与点L重合,
    ∵∠OLB′=180°﹣∠ALB′=180°﹣∠AKB′=90°,
    ∴B′C′⊥OL,
    ∵OL为⊙O的半径,
    ∴B′C′与⊙O相切;
    如图3,△ABC绕点A旋转到B′C′∥OA,作OR⊥B′C′交C′B′的延长线于点R,
    ∵OR=AK=3,
    ∴B′C′与⊙O相切;
    当△ABC绕点A旋转到B′C′与BC重合,即旋转角α=360°,则B′C′与⊙O相切,
    综上所述,在旋转的过程中边B′C′所在直线与⊙O相切3次,
    故选:C.



    7.(2022•无锡)如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是(  )

    A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°
    【解答】解:∵弦AD平分∠BAC,∠EAD=25°,
    ∴∠OAD=∠ODA=25°.
    ∴∠BOD=2∠OAD=50°.
    故选项D不符合题意;
    ∵∠OAD=∠CAD,
    ∴∠CAD=∠ODA,
    ∴OD∥AC,即AE∥OD,故选项B不符合题意;
    ∵DE是⊙O的切线,
    ∴OD⊥DE.
    ∴DE⊥AE.故选项A不符合题意;
    如图,过点O作OF⊥AC于F,则四边形OFED是矩形,
    ∴OF=DE.
    在直角△AFO中,OA>OF.
    ∵OD=OA,
    ∴DE<OD.
    故选项C符合题意.
    故选:C.

    8.(2021•镇江)如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于(  )

    A.27° B.29° C.35° D.37°
    【解答】解:连接OD,
    ∵⊙O与边AC相切于点D,
    ∴∠ADO=90°,
    ∵∠BAC=36°,
    ∴∠AOD=90°﹣36°=54°,
    ∴∠AFD=AOD=54°=27°,
    故选:A.

    9.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于(  )

    A.75° B.70° C.65° D.60°
    【解答】解:∵OC⊥OA,
    ∴∠AOC=90°,
    ∵∠APO=∠BPC=70°,
    ∴∠A=90°﹣70°=20°,
    ∵OA=OB,
    ∴∠OBA=∠A=20°,
    ∵BC为⊙O的切线,
    ∴OB⊥BC,
    ∴∠OBC=90°,
    ∴∠ABC=90°﹣20°=70°.
    故选:B.
    10.(2020•南京)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是(  )

    A.(9,2) B.(9,3) C.(10,2) D.(10,3)
    【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,
    则PE⊥y轴,PF⊥x轴,
    ∵∠EOF=90°,
    ∴四边形PEOF是矩形,
    ∵PE=PF,PE∥OF,
    ∴四边形PEOF为正方形,
    ∴OE=PF=PE=OF=5,
    ∵A(0,8),
    ∴OA=8,
    ∴AE=8﹣5=3,
    ∵四边形OACB为矩形,
    ∴BC=OA=8,BC∥OA,AC∥OB,
    ∴EG∥AC,
    ∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,
    ∴CG=AE=3,EG=OB,
    ∵PE⊥AO,AO∥CB,
    ∴PG⊥CD,
    ∴CD=2CG=6,
    ∴DB=BC﹣CD=8﹣6=2,
    ∵PD=5,DG=CG=3,
    ∴PG=4,
    ∴OB=EG=5+4=9,
    ∴D(9,2).
    故选:A.

    四.正多边形和圆(共2小题)
    11.(2021•徐州)如图,一枚圆形古钱币的中间是一个正方形孔,已知圆的直径与正方形的对角线之比为3:1,则圆的面积约为正方形面积的(  )

    A.27倍 B.14倍 C.9倍 D.3倍
    【解答】解:设AB=6a,因为CD:AB=1:3,
    所以CD=2a,OA=3a,
    因此正方形的面积为CD•CD=2a2,
    圆的面积为π×(3a)2=9πa2,
    所以圆的面积是正方形面积的9πa2÷(2a2)≈14(倍),
    故选:B.

    12.(2020•连云港)10个大小相同的正六边形按如图所示方式紧密排列在同一平面内,A、B、C、D、E、O均是正六边形的顶点.则点O是下列哪个三角形的外心(  )

    A.△AED B.△ABD C.△BCD D.△ACD
    【解答】解:从O点出发,确定点O分别到A,B,C,D,E的距离,只有OA=OC=OD,
    ∵三角形的外心到三角形的三个顶点的距离相等,
    ∴点O是△ACD的外心,
    故选:D.
    五.扇形面积的计算(共3小题)
    13.(2022•连云港)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为(  )

    A.π﹣ B.π﹣ C.π﹣2 D.π﹣
    【解答】解:连接OA、OB,过点O作OC⊥AB,

    由题意可知:∠AOB=60°,
    ∵OA=OB,
    ∴△AOB为等边三角形,
    ∴AB=AO=BO=2
    ∴S扇形AOB==π,
    ∵OC⊥AB,
    ∴∠OCA=90°,AC=1,
    ∴OC=,
    ∴S△AOB==,
    ∴阴影部分的面积为:π﹣;
    故选:B.
    14.(2020•泰州)如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE为36°,则图中阴影部分的面积为(  )

    A.10π B.9π C.8π D.6π
    【解答】解:连接OC,
    ∵∠AOB=90°,CD⊥OA,CE⊥OB,
    ∴四边形CDOE是矩形,
    ∴CD∥OE,
    ∴∠DEO=∠CDE=36°,
    由矩形CDOE易得到△DOE≌△CEO,
    ∴∠COB=∠DEO=36°
    ∴图中阴影部分的面积=扇形OBC的面积,
    ∵S扇形OBC==10π
    ∴图中阴影部分的面积=10π,
    故选:A.

    15.(2020•苏州)如图,在扇形OAB中,已知∠AOB=90°,OA=,过的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为(  )

    A.π﹣1 B.﹣1 C.π﹣ D.﹣
    【解答】解:∵CD⊥OA,CE⊥OB,
    ∴∠CDO=∠CEO=∠AOB=90°,
    ∴四边形CDOE是矩形,
    连接OC,
    ∵点C是的中点,
    ∴∠AOC=∠BOC,
    ∵OC=OC,
    ∴△COD≌△COE(AAS),
    ∴OD=OE,
    ∴矩形CDOE是正方形,
    ∵OC=OA=,
    ∴OE=1,
    ∴图中阴影部分的面积=﹣1×1=﹣1,
    故选:B.

    六.圆锥的计算(共3小题)
    16.(2022•无锡)在Rt△ABC中,∠C=90°,AC=3,BC=4,以AC所在直线为轴,把△ABC旋转1周,得到圆锥,则该圆锥的侧面积为(  )
    A.12π B.15π C.20π D.24π
    【解答】解:在Rt△ABC中,∠C=90°,AC=3,BC=4,
    ∴AB===5,
    由已知得,母线长l=5,半径r为4,
    ∴圆锥的侧面积是s=πlr=5×4×π=20π.
    故选:C.
    17.(2021•镇江)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积(  )
    A.有最大值π B.有最小值π
    C.有最大值π D.有最小值π
    【解答】解:∵2r+l=6,
    ∴l=6﹣2r,
    ∴圆锥的侧面积S侧=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣)2﹣]=﹣2π(r﹣)2+π,
    ∴当r=时,S侧有最大值π.
    故选:C.
    18.(2020•南通)如图是一个几何体的三视图(图中尺寸单位:cm),则这个几何体的侧面积为(  )

    A.48πcm2 B.24πcm2 C.12πcm2 D.9πcm2
    【解答】解:由三视图得这个几何体为圆锥,圆锥的母线长为8,底面圆的直径为6,
    所以这个几何体的侧面积=×π×6×8=24π(cm2).
    故选:B.

    相关试卷

    第2章 对称图形——圆(选择题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版):

    这是一份第2章 对称图形——圆(选择题中考经典常考题)-江苏省2023-2024学年上学期九年级数学单元培优专题练习(苏科版),共22页。

    2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题):

    这是一份2022-2023学年苏科版九年级数学上学期期末复习培优练习(江苏扬州中考真题),共27页。试卷主要包含了,与y轴交于点C等内容,欢迎下载使用。

    第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北):

    这是一份第24章+圆(选择题)-【人教版-中考真题】九年级数学上学期期末复习培优练习(湖北),共26页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map