|学案下载
终身会员
搜索
    上传资料 赚现金
    专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
    立即下载
    加入资料篮
    专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)01
    专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)02
    专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)03
    还剩13页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)

    展开
    这是一份专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共16页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    专题23.4 中心对称知识讲解)

    【学习目标】

    1理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;

    2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;

    3探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.

    【要点梳理】

    要点一、中心对称和中心对称图形

    1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.

      这两个图形中的对应点叫做关于中心的对称点.

    特别说明1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .

    2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.

    特别说明(1)中心对称图形指的是一个图形;(2线段,平行四边形,圆等等都是中心对称图形.

    3.中心对称与中心对称图形的区别与联系:

     

    中心对称

    中心对称图形

    区别

    ①指两个全等图形之间的相互位置关系.

    ②对称中心不定.

    ①指一个图形本身成中心对称.

    ②对称中心是图形自身或内部的点.

    联系

    如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.

    如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.

    要点二、关于原点对称的点的坐标特征

    关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.

    要点三、中心对称、轴对称、旋转对称

    1.中心对称图形与旋转对称图形的比较:

    2.中心对称图形与轴对称图形比较:

    特别说明中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.

    【典型例题】

    类型一、中心对称图形与轴对称图形的识别

    11.下列四个银行标志中,既是中心对称图形又是轴对称图形的是(       

    ABC D

    【答案】A

    【分析】在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180°后,能与原图形重合,那么就说这个图形是中心对称图形.根据轴对称图形和中心对称图形的概念分析判断即可.

    解:A. 既是轴对称图形,又是中心对称图形,符合题意;

    B.是轴对称图形,但不是中心对称图形,故不符合题意;

    C.既不是轴对称图形,也不是中心对称图形,故不符合题意;

    D. 是中心对称图形,但不是轴对称图形,故不符合题意.

    故选:A

    【点拨】本题主要考查了轴对称图形和中心对称图形的知识,理解轴对称图形和中心对称图形的概念是解题关键.

    举一反三:

    【变式1 习近平主席在2022年新年贺词中提到人不负青山,青山定不负人,一语道出人与自然和谐共生的至简大道.下列有关环保的四个图形中,是中心对称图形的是(       

    A  B   C  D

    【答案】B

    【分析】根据中心对称图形的概念进行判断即可;

    解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;

    故符合题意的是选项B

    故选:B

    【点拨】本题主要考查中心对称图形的概念,掌握中心对称图形的概念是解题的关键.

    【变式2 下列图形既是轴对称图形又是中心对称图形的是(       

    A B C  D

    【答案】B

    【分析】根据轴对称图形和中心对称图形的定义判断即可.

    解:A、该图形是轴对称图形,不是中心对称图形,故A选项错误;

    B、该图形既是轴对称图形,也是中心对称图形,故B选项正确;

    C、该图形不是轴对称图形,是中心对称图形,故C选项错误;

    D、该图形既不是轴对称图形,也不是中心对称图形,故D选项错误.

    故答案为B

    【点拨】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,中心对称图形是要寻找对称中心旋转180度后与原图重合.

    类型利用中心对称图形作图

    2如图,在正方形网格中,的顶点在格点上,请仅用无刻度直尺完成以下作图(保留作图痕迹).

    1)在图1中,作关于点对称的

    2)在图2中,作绕点顺时针旋转一定角度后,顶点仍在格点上的

    【分析】

    1)分别作出ABC三点关于O点对称的点,然后顺次连接即可得

    2)计算得出AB=AC=5,再根据旋转作图即可.

    解:1)如图1所示;

    2)根据勾股定理可计算出AB=AC=5,再作图,如图2所示.

    【点拨】本题考查复杂-应用与设计,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.

    举一反三:

    【变式1如图所示的两个图形成中心对称,请找出它的对称中点.

    【分析】根据关于中心对称的两个图形,对应点的连线都经过对称中心作图.

    解:连接CC′BB′,两条线段相交于当O

    则点O即为对称中点.

    【点拨】本题考查的是中心对称的性质,掌握关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分是解题的关键.

    【变式2 在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)

    1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2

    2△A2B2C2△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.

    【答案】(1)画图见分析;(2)(02.

    解:分析:(1)根据中心对称和平移性质分别作出变换后三顶点的对应点,再顺次连接可得;

    2)根据中心对称的概念即可判断.

    详解:(1)如图所示,△A1B1C1△A2B2C2即为所求;

     2)由图可知,△A2B2C2△ABC关于点(02)成中心对称.

    点拨本题考查了中心对称作图和平移作图,熟练掌握中心对称的性质和平移的性质是解答本题的关键. 中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.

    类型三、利用中心对称图形性质求值

    3.如图,关于O点中心对称,点EF在线段AC上,且AF=CE

    求证:FD=BE

    【分析】根据中心对称得出OB=ODOA=OC,求出OF=OE,根据SAS推出DOF≌△BOE即可.

    证明:∵△ABOCDO关于O点中心对称,OB=ODOA=OC

    AF=CEOF=OE

    DOFBOE中,

    ∴△DOF≌△BOESAS).

    FD=BE

    举一反三:

    【变式1如图,在中,DBC上任一点,AB于点AC于点F,求证:点关于AD的中点对称.

    试题分析:根据题意推知四边形AEDF是平行四边形,则该四边形关于点O对称.

    证明:如图,连接EF交于点O

    ABACF

    四边形AEDF是平行四边形,

    关于AD的中点对称.  

    【变式2如图,DABCBC的中点,连接AD并延长到点E,使DE=AD,连接BE

    (1)图中哪两个图形成中心对称;

    (2)ADC的面积为4,求ABE的面积.

    【答案】(1)图中△ADC和三角形EDB成中心对称;(28

    【分析】

    1)直接利用中心对称的定义写出答案即可;

    2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积.

    解:1)图中△ADC和三角形EDB成中心对称;

    2∵△ADC和三角形EDB成中心对称,△ADC的面积为4

    ∴△EDB的面积也为4

    ∵DBC的中点,

    ∴△ABD的面积也为4

    所以△ABE的面积为8

    【点拨】本题考查了中心对称的定义,解题的关键是了解中心对称的定义,难度较小.

    类型坐标系中的中心对称图形

    4在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).

    1)若△ABC△A1B1C1关于原点O成中心对称图形,画出△A1B1C1

    2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2

    3)在x轴上存在一点P,满足点P到点B1与点C1距离之和最小,请直接写出P B1+P C1的最小值为     

    【答案】(1)画图见分析;(2)画图见分析;(3

    【分析】

    1)根据关于原点中心对称的点的坐标特征,分别描出点ABC的对应点A1B1C1,即可得到A1B1C1

    2)利用网格特点,根据旋转的性质画出点AB旋转后的对应点A2B2,即可得到A2B2C

    3)作C1(或B1)点关于x轴的对称点,根据勾股定理即可求解.

    解:1)(2)如图所示

    3)如图,

    C1点关于x轴的对称点C4

    RtΔC4DB1中,C4B1=

    故答案为:

    举一反三:

    【变式1已知点Pxy)的坐标满足方程(x+32+=0,求点P分别关于x轴,y轴以及原点的对称点坐标.

    【答案】点P关于x轴,y轴以及原点的对称点坐标分别为(34),(34),(34).

    【分析】先根据非负数的性质通过方程式求得的值,即得到点的坐标,然后求点分别关于轴,轴以及原点的对称点坐标.

    解:由题意,得

    x+3=0y+4=0

    解得x=3y=4

    P点的坐标为(34),

    P关于x轴,y轴以及原点的对称点坐标分别为(34),(34),(34).

    【点拨】本题是一道小综合题,涉及了非负数性质、点的坐标及点关于轴、轴以及原点的对称的性质,是考查学生综合知识运用能力的好题.

    【变式2在平面直角坐标系中,点A关于y轴的对称点为点B,点A关于原点O的对称点为点C

    1)若A点的坐标为(12),请你在给出的坐标系中画出ABC.设ABy轴的交点为D,则=     

    2)若点A的坐标为(ab)(ab≠0),则ABC的形状为     

    【答案】(12)直角三角形.

    【分析】

    1)由A点的坐标为(12),根据关于原点、坐标轴对称的点的坐标特征,求出BC的坐标,继而得到点D的坐标,在坐标轴上描出ABC,顺次连接ABC三点可得到ABC;根据各点的坐标可得到ADODABBC的长度,然后利用三角形面积公式即可得到答案;

    2)点A的坐标为(ab)(ab≠0),则B点坐标为(ab),C点坐标为(ab),则ABx轴,BCy轴,至此结合x轴与y轴的位置关系就不难判断出△ABC的形状.

    解:1A点的坐标为(12),点A关于y轴的对称点为点B,点A关于原点O的对称点为点CB点坐标为(-12),C点坐标为(-1-2),

    ABBCACABy轴于D点,如图,

    D点坐标为(02),

    SADO=ODAD=×2×1=1SABC=BCAB=×4×2=4

    =

    2)点A的坐标为(ab)(ab≠0),则B点坐标为(-ab),C点坐标为(-a-b),

    ABx轴,BCy轴,AB=2|a|BC=2|b|

    ∴△ABC的形状为直角三角形.

    【点拨】本题考查了关于原点对称的坐标特点:点P(ab)关于原点的对称点P′的坐标为(–ab).也考查了关于x轴、y轴对称的坐标特点以及三角形的面积公式.

    类型三、中心对称图形的综合运用

    5已知:如图,三角形ABM与三角形ACM关于直线AF成轴对称,三角形ABE与三角形DCE关于点E成中心对称,点EDM都在线段AF上,BM的延长线交CF于点P

    1)求证:AC=CD

    2)若∠BAC=2∠MPC,请你判断∠F∠MCD的数量关系,并说明理由.

    【分析】

    1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;

    2)利用(1)中所求,进而得出对应角相等,进而得出答案.

    (1)证明:ABMACM关于直线AF成轴对称,

    ABM≌ACM

    ∴AB=AC

    ABEDCE关于点E成中心对称,

    ABE≌DCE

    ∴AB=CD

    ∴AC=CD

    (2)∠F=∠MCD.

    理由:由(1)可得∠BAE=∠CAE=∠CDE∠CMA=∠BMA

    ∵∠BAC=2∠MPC∠BMA=∠PMF

    ∠MPC=α,则∠BAE=∠CAE=∠CDE=α

    ∠BMA=β,则∠PMF=∠CMA=β

    ∴∠F=∠CPM−∠PMF=α−β

    ∠MCD=∠CDE−∠DMC=α−β

    ∴∠F=∠MCD.

    【点拨】本题主要考查轴对称、中心对称性质和全等三角形的判定及性质.通过轴对称与中心对称的性质得出全等三角形的判定条件是解题的关键.

    举一反三:

    【变式1如图,已知点A23)和直线y=x

    1)点A关于直线y=x的对称点为点B,点A关于原点(00)的对称点为点C;写出点BC的坐标;

    2)若点D是点B关于原点(00)的对称点,判断四形ABCD的形状,并说明理由.

    【答案】(1B32),点C23);(2)四边形ABCD是矩形.理由见分析.

    【分析】

    1)依据关于直线y=x的对称点的坐标特征以及关于原点的对称点的坐标特征,即可得到B32),C23);

    2)先依据轴对称和中心对称的性质,得到四边形ABCD是平行四边形,再依据AC=BD,即可得出四边形ABCD是矩形.

    解:1A23),A关于直线y=x的对称点B和关于原点的对称点C的坐标分别为:B32),C23);

    2)四边形ABCD是矩形.理由如下:

    B32)关于原点的对称点为D32).

    BD关于原点对称,BO=DO

    同理AO=DO四边形ABCD是平行四边形.

    A关于直线y=x的对称点为B,点A关于原点的对称点CAC=BD四边形ABCD是矩形.

    【点拨】本题主要考查了关于原点对称的点的坐标特征以及矩形的判定,解题时注意:对角线相等的平行四边形是矩形.

    【变式21)画图:图为正方形网格,画出绕点顺时针旋转后的图形.

    2)尺规作图:在图中作出四边形关于点对称的图形(不写作法,保留作图痕迹,用黑色笔将作图痕迹涂黑).

    【分析】

    1)连结OAOBOC,将OAOBOC绕着点O顺时针旋转90°ODOEOF,顺次连接即可;

    2)连结AOBOCODO并延长,在延长线上截取A′O=AOB′O=BOC′O=COD′O=DO,顺次连接即可.

    解:1)连结OAOBOC,将OAOBOC绕着点O顺时针旋转90°ODOEOF

    顺次连结DEEFFD

    如图,则为所求;

    2)连结AOBOCODO并延长,在延长线上截取A′O=AOB′O=BOC′O=COD′O=DO

    顺次连结A′B′B′C′C′D′D′A

    如图,四边形为所求.

    【点拨】本题考查旋转作图,中心对称作图问题,掌握旋转作图与中心对称作图的方法与步骤是解题关键.

    相关学案

    初中数学人教版九年级上册23.2.1 中心对称导学案: 这是一份初中数学人教版九年级上册23.2.1 中心对称导学案,共14页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    初中数学人教版九年级下册27.1 图形的相似学案及答案: 这是一份初中数学人教版九年级下册27.1 图形的相似学案及答案,共15页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    数学九年级下册27.3 位似学案: 这是一份数学九年级下册27.3 位似学案,共20页。学案主要包含了学习目标,要点梳理,典型例题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        专题23.4 中心对称(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map