|试卷下载
终身会员
搜索
    上传资料 赚现金
    广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析
    立即下载
    加入资料篮
    广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析01
    广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析02
    广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析

    展开
    这是一份广东省深圳市高峰校2022年中考数学考试模拟冲刺卷含解析,共20页。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,以两条直线l1,l2的交点坐标为解的方程组是( )

    A. B. C. D.
    2.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是(  )
    A.r<5 B.r>5 C.r<10 D.5<r<10
    3.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是(  )

    A.70° B.44° C.34° D.24°
    4.如果代数式有意义,则实数x的取值范围是( )
    A.x≥﹣3 B.x≠0 C.x≥﹣3且x≠0 D.x≥3
    5.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是(  )
    A.5 B.4 C.3 D.2
    6.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为(  )
    A.4.995×1011 B.49.95×1010
    C.0.4995×1011 D.4.995×1010
    7.下列调查中,最适合采用普查方式的是(  )
    A.对太原市民知晓“中国梦”内涵情况的调查
    B.对全班同学1分钟仰卧起坐成绩的调查
    C.对2018年央视春节联欢晚会收视率的调查
    D.对2017年全国快递包裹产生的包装垃圾数量的调查
    8.如图,数轴上的四个点A,B,C,D对应的数为整数,且AB=BC=CD=1,若|a|+|b|=2,则原点的位置可能是(  )

    A.A或B B.B或C C.C或D D.D或A
    9.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为( )
    A.1 B. C. D.
    10.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为(  )
    A.= B.=
    C.= D.=
    11.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能是多边形的是( )
    A.圆锥 B.圆柱 C.球 D.正方体
    12.观察下列图案,是轴对称而不是中心对称的是(  )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.

    14.计算:2cos60°-+(5-π)°=____________.
    15.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段 的长为________.

    16.二次根式中字母x的取值范围是_____.
    17.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH; ④EF的最小值是.其中正确的是________.(把你认为正确结论的序号都填上)

    18.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有_____个.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
    (1)求证:四边形ABEF是平行四边形;
    (2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.

    20.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.

    解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.
    21.(6分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.
    22.(8分)如图,在中,,以边为直径作⊙交边于点,过点作于点,、的延长线交于点.
    求证:是⊙的切线;若,且,求⊙的半径与线段的长.
    23.(8分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
    (1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
    求证:①PN=PF;②DF+DN=DP;
    (2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.

    24.(10分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.
    25.(10分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.

    26.(12分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.
    (1)求∠A的度数.
    (2)求图中阴影部分的面积.

    27.(12分)对于方程=1,某同学解法如下:
    解:方程两边同乘6,得3x﹣2(x﹣1)=1 ①
    去括号,得3x﹣2x﹣2=1 ②
    合并同类项,得x﹣2=1 ③
    解得x=3 ④
    ∴原方程的解为x=3 ⑤上述解答过程中的错误步骤有   (填序号);请写出正确的解答过程.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.
    【详解】
    直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;
    直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;
    因此以两条直线l1,l2的交点坐标为解的方程组是:.
    故选C.
    【点睛】
    本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
    2、D
    【解析】
    延长CD交⊙D于点E,
    ∵∠ACB=90°,AC=12,BC=9,∴AB==15,
    ∵D是AB中点,∴CD=,
    ∵G是△ABC的重心,∴CG==5,DG=2.5,
    ∴CE=CD+DE=CD+DF=10,
    ∵⊙C与⊙D相交,⊙C的半径为r,
    ∴ ,
    故选D.

    【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.
    3、C
    【解析】
    易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC
    【详解】
    ∵AB=BD,∠B=40°,
    ∴∠ADB=70°,
    ∵∠C=36°,
    ∴∠DAC=∠ADB﹣∠C=34°.
    故选C.
    【点睛】
    本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.
    4、C
    【解析】
    根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.
    【详解】
    由题意得,x+3≥0,x≠0,
    解得x≥−3且x≠0,
    故选C.
    【点睛】
    本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.
    5、D
    【解析】
    由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
    【详解】
    不等式组整理得:,
    由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
    即-2<a≤4,即a=-1,0,1,2,3,4,
    分式方程去分母得:5-y+3y-3=a,即y=,
    由分式方程有整数解,得到a=0,2,共2个,
    故选:D.
    【点睛】
    本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
    6、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    将499.5亿用科学记数法表示为:4.995×1.
    故选D.
    【点睛】
    此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、B
    【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
    详解:A、调查范围广适合抽样调查,故A不符合题意;
    B、适合普查,故B符合题意;
    C、调查范围广适合抽样调查,故C不符合题意;
    D、调查范围广适合抽样调查,故D不符合题意;
    故选:B.
    点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
    8、B
    【解析】
    根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.
    【详解】
    ∵AB=BC=CD=1,
    ∴当点A为原点时,|a|+|b|>2,不合题意;
    当点B为原点时,|a|+|b|=2,符合题意;
    当点C为原点时,|a|+|b|=2,符合题意;
    当点D为原点时,|a|+|b|>2,不合题意;
    故选:B.
    【点睛】
    此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值.
    9、B
    【解析】
    直接利用概率的意义分析得出答案.
    【详解】
    解:因为一枚质地均匀的硬币只有正反两面,
    所以不管抛多少次,硬币正面朝上的概率都是,
    故选B.
    【点睛】
    此题主要考查了概率的意义,明确概率的意义是解答的关键.
    10、A
    【解析】
    分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.
    详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:=.
    故选A.
    点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.
    11、C
    【解析】
    【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.
    【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;
    B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;
    C. 球的主视图只能是圆,故符合题意;
    D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,
    故选C.
    【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.
    12、A
    【解析】
    试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:
    A、是轴对称图形,不是中心对称图形,故本选项符合题意;
    B、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
    D、是轴对称图形,也是中心对称图形,故本选项不符合题意.
    故选A.
    点睛:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、200
    【解析】
    先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.
    【详解】
    解:∵⊙O的直径为1000mm,
    ∴OA=OA=500mm.
    ∵OD⊥AB,AB=800mm,
    ∴AC=400mm,
    ∴OC== =300mm,
    ∴CD=OD-OC=500-300=200(mm).
    答:水的最大深度为200mm.
    故答案为:200
    【点睛】
    本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.
    14、1
    【解析】
    解:原式==1-2+1=1.故答案为1.
    15、
    【解析】
    已知BC=8, AD是中线,可得CD=4, 在△CBA和△CAD中, 由∠B=∠DAC,∠C=∠C, 可判定△CBA∽△CAD,根据相似三角形的性质可得 , 即可得AC2=CD•BC=4×8=32,解得AC=4.
    16、x≤1
    【解析】
    二次根式有意义的条件就是被开方数是非负数,即可求解.
    【详解】
    根据题意得:1﹣x≥0,
    解得x≤1.
    故答案为:x≤1
    【点睛】
    主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    17、②③④
    【解析】
    ①可用特殊值法证明,当为的中点时,,可见.
    ②可连接,交于点,先根据证明,得到,根据矩形的性质可得,故,又因为,故,故.
    ③先证明,得到,再根据,得到,代换可得.
    ④根据,可知当取最小值时,也取最小值,根据点到直线的距离也就是垂线段最短可得,当时,取最小值,再通过计算可得.
    【详解】
    解:
    ①错误.当为的中点时,,可见;
    ②正确.
    如图,连接,交于点,




    ,,,
    四边形为矩形,






    .
    ③正确.





    又,




    .
    ④正确.
    且四边形为矩形,

    当时,取最小值,
    此时,
    故的最小值为.
    故答案为:②③④.
    【点睛】
    本题是动点问题,综合考查了矩形、正方形的性质,全等三角形与相似三角形的性质与判定,线段的最值问题等,合理作出辅助线,熟练掌握各个相关知识点是解答关键.
    18、1
    【解析】
    试题解析:∵袋中装有6个黑球和n个白球,
    ∴袋中一共有球(6+n)个,
    ∵从中任摸一个球,恰好是黑球的概率为,
    ∴,
    解得:n=1.
    故答案为1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
    【解析】
    (1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
    (2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
    【详解】
    (1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
    (2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
    ∵CA=CE,CB=CF,∴AE=BF.
    ∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
    【点睛】
    本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.
    20、(1)7x1+4x+4;(1)55.
    【解析】
    (1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;
    (1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.
    【详解】
    解:
    (1)纸片①上的代数式为:
    (4x1+5x+6)+(3x1﹣x﹣1)
    =4x1+5x+6+3x1-x-1
    =7x1+4x+4
    (1)解方程:1x=﹣x﹣9,解得x=﹣3
    代入纸片①上的代数式得
    7x1+4x+4
    =7×(-3)²+4×(-3)+4
    =63-11+4=55
    即纸片①上代数式的值为55.
    【点睛】
    本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.
    21、25%
    【解析】
    首先设这两年中获奖人次的平均年增长率为x,则可得八年级的获奖人数为48(1+x),九年级的获奖人数为48(1+x)2;故根据题意可得48(1+x)2=183,即可求得x的值,即可求解本题.
    【详解】
    设这两年中获奖人次的平均年增长率为x,
    根据题意得:48+48(1+x)+48(1+x)2=183,
    解得:x1==25%,x2=﹣(不符合题意,舍去).
    答:这两年中获奖人次的年平均年增长率为25%
    22、(1)证明参见解析;(2)半径长为,=.
    【解析】
    (1)已知点D在圆上,要连半径证垂直,连结,则,所以,∵,∴.∴,∴∥.由得出,于是得出结论;(2)由得到,设,则.,,,由,解得值,进而求出圆的半径及AE长.
    【详解】
    解:(1)已知点D在圆上,要连半径证垂直,如图2所示,连结,∵,∴.∵,∴.∴,∴∥.∵,∴.∴是⊙的切线;(2)在和中,∵,∴. 设,则.∴,.∵,∴.∴,解得=,则3x=,AE=6×-=6,∴⊙的半径长为,=.

    【点睛】
    1.圆的切线的判定;2.锐角三角函数的应用.
    23、(1)①证明见解析;②证明见解析;(2),证明见解析.
    【解析】
    (1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
    ②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
    (2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
    【详解】
    解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM⊥PD,∠DMP=45°,
    ∴DP=MP.
    ∵PM⊥PD,PF⊥PN,
    ∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
    在△PMN和△PDF中, ,
    ∴△PMN≌△PDF(ASA),
    ∴PN=PF,MN=DF;
    ②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
    ∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
    (2).理由如下:
    过点P作PM1⊥PD,PM1交AD边于点M1,如图,
    ∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
    ∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
    在△PM1N和△PDF中,
    ∴△PM1N≌△PDF(ASA),∴M1N=DF,
    由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
    ∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
    ∴DN﹣DF=DP.

    【点睛】
    本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.
    24、(1)520千米;(2)300千米/时.
    【解析】
    试题分析:(1)根据普通列车的行驶路程=高铁的行驶路程×1.3得出答案;(2)首先设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时,根据题意列出分式方程求出未知数x的值.
    试题解析:(1)依题意可得,普通列车的行驶路程为400×1.3=520(千米)
    (2)设普通列车的平均速度为x千米/时,则高铁平均速度为2.5x千米/时
    依题意有:=3 解得:x=120
    经检验:x=120分式方程的解且符合题意 高铁平均速度:2.5×120=300千米/时
    答:高铁平均速度为 2.5×120=300千米/时.
    考点:分式方程的应用.
    25、见解析.
    【解析】
    先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
    【详解】
    ∵AE为△ABC的角平分线,CH⊥AE,
    ∴△ACF是等腰三角形,
    ∴AF=AC,HF=CH,
    ∵AD为△ABC的中线,
    ∴DH是△BCF的中位线,
    ∴DH=BF.
    【点睛】
    本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
    26、 (1) ∠A=30°;(2)
    【解析】
    (1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
    再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
    (2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.
    【详解】
    解:(1)连结OC
    ∵CD为⊙O的切线
    ∴OC⊥CD
    ∴∠OCD=90°
    又∵OA=OC
    ∴∠A=∠ACO
    又∵∠A=∠D
    ∴∠A=∠ACO=∠D
    而∠A+∠ACD+∠D=180°﹣90°=90°
    ∴∠A=30°

    (2)由(1)知:∠D=∠A=30°
    ∴∠COD=60°
    又∵CD=2
    ∴OC=2
    ∴S阴影=.
    【点睛】
    本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.
    27、(1)错误步骤在第①②步.(2)x=4.
    【解析】
    (1)第①步在去分母的时候,两边同乘以6,但是方程右边没有乘,另外在去括号时没有注意到符号的变化,所以出现错误;
    (2)注重改正错误,按以上步骤进行即可.
    【详解】
    解:(1)方程两边同乘6,得3x﹣2(x﹣1)=6 ①
    去括号,得3x﹣2x+2=6 ②
    ∴错误步骤在第①②步.
    (2)方程两边同乘6,得3x﹣2(x﹣1)=6
    去括号,得3x﹣2x+2=6
    合并同类项,得x+2=6
    解得x=4
    ∴原方程的解为x=4
    【点睛】
    本题考查的解一元一次方程,注意去分母与去括号中常见错误,符号也经常是出现错误的原因.

    相关试卷

    广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。

    广东省深圳市文锦中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份广东省深圳市文锦中学2021-2022学年中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    广东省深圳市龙岗区石芽岭校2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份广东省深圳市龙岗区石芽岭校2021-2022学年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map