广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析
展开这是一份广东省深圳市翠园中学2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,解分式方程﹣3=时,去分母可得等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A. B.
C. D.
2.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤.其中正确结论的是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
3.如图,⊙O内切于正方形ABCD,边BC、DC上两点M、N,且MN是⊙O的切线,当△AMN的面积为4时,则⊙O的半径r是( )
A. B.2 C.2 D.4
4.若数a,b在数轴上的位置如图示,则( )
A.a+b>0 B.ab>0 C.a﹣b>0 D.﹣a﹣b>0
5.九章算术是中国古代数学专著,九章算术方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是
A. B. C. D.
6.已知a+b=4,c﹣d=﹣3,则(b+c)﹣(d﹣a)的值为( )
A.7 B.﹣7 C.1 D.﹣1
7.解分式方程﹣3=时,去分母可得( )
A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4
C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=4
8.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为甲=89分,乙=89分,S甲2=195,S乙2=1.那么成绩较为整齐的是( )
A.甲班 B.乙班 C.两班一样 D.无法确定
9.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
10.一组数据8,3,8,6,7,8,7的众数和中位数分别是( )
A.8,6 B.7,6 C.7,8 D.8,7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.
12.如图,△ABC中,AB=5,AC=6,将△ABC翻折,使得点A落到边BC上的点A′处,折痕分别交边AB、AC于点E,点F,如果A′F∥AB,那么BE=_____.
13.边长分别为a和2a的两个正方形按如图的样式摆放,则图中阴影部分的面积为_________.
14.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
15.如图,在正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF,OE、OF分别交AB、BC于点E、点F,AE=3,FC=2,则EF的长为_____.
16.不透明袋子中装有个球,其中有个红球、个绿球和个黑球,这些球除颜色外无其他差别.从袋子中随机取出个球,则它是黑球的概率是_____.
三、解答题(共8题,共72分)
17.(8分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
(2)当直线l与AD边有公共点时,求t的取值范围.
18.(8分)“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.
求与之间的函数关系式;如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
19.(8分)如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
(1)求证:BC平分∠DBA;
(2)若,求的值.
20.(8分)解方程:
21.(8分)为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.分别求每台型, 型挖掘机一小时挖土多少立方米?若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
22.(10分) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?
23.(12分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
(1)用树状图或列表法求出小王去的概率;
(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
24.均衡化验收以来,乐陵每个学校都高楼林立,校园环境美如画,软件、硬件等设施齐全,小明想要测量学校食堂和食堂正前方一棵树的高度,他从食堂楼底M处出发,向前走6 米到达A处,测得树顶端E的仰角为30°,他又继续走下台阶到达C处,测得树的顶端的仰角是60°,再继续向前走到大树底D处,测得食堂楼顶N的仰角为45°,已如A点离地面的高度AB=4米,∠BCA=30°,且B、C、D 三点在同一直线上.
(1)求树DE的高度;
(2)求食堂MN的高度.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.
【详解】
解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为
当C从D点运动到E点时,即时,.
当A从D点运动到E点时,即时,,
与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.
故选A.
【点睛】
本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.
2、D
【解析】
根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;根据直角三角形的性质判断出△AED、△MAD、△MEA三个三角形相似,利用相似三角形对应边成比例可得,然后求出MD=2AM=4EM,判断出④正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出⑤正确;过点M作MN⊥AB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GH∥AB,过点O作OK⊥GH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.
【详解】
在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,
∵E、F分别为边AB,BC的中点,
∴AE=BF=BC,
在△ABF和△DAE中,
,
∴△ABF≌△DAE(SAS),
∴∠BAF=∠ADE,
∵∠BAF+∠DAF=∠BAD=90°,
∴∠ADE+∠DAF=∠BAD=90°,
∴∠AMD=180°-(∠ADE+∠DAF)=180°-90°=90°,
∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;
∵DE是△ABD的中线,
∴∠ADE≠∠EDB,
∴∠BAF≠∠EDB,故②错误;
∵∠BAD=90°,AM⊥DE,
∴△AED∽△MAD∽△MEA,
∴
∴AM=2EM,MD=2AM,
∴MD=2AM=4EM,故④正确;
设正方形ABCD的边长为2a,则BF=a,
在Rt△ABF中,AF=
∵∠BAF=∠MAE,∠ABC=∠AME=90°,
∴△AME∽△ABF,
∴ ,
即,
解得AM=
∴MF=AF-AM=,
∴AM=MF,故⑤正确;
如图,过点M作MN⊥AB于N,
则
即
解得MN=,AN=,
∴NB=AB-AN=2a-=,
根据勾股定理,BM=
过点M作GH∥AB,过点O作OK⊥GH于K,
则OK=a-=,MK=-a=,
在Rt△MKO中,MO=
根据正方形的性质,BO=2a×,
∵BM2+MO2=
∴BM2+MO2=BO2,
∴△BMO是直角三角形,∠BMO=90°,故③正确;
综上所述,正确的结论有①③④⑤共4个.
故选:D
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.
3、C
【解析】
连接,交于点设则根据△AMN的面积为4,列出方程求出的值,再计算半径即可.
【详解】
连接,交于点
内切于正方形 为的切线,
经过点 为等腰直角三角形,
为的切线,
设则
△AMN的面积为4,
则
即解得
故选:C.
【点睛】
考查圆的切线的性质,等腰直角三角形的性质,三角形的面积公式,综合性比较强.
4、D
【解析】
首先根据有理数a,b在数轴上的位置判断出a、b两数的符号,从而确定答案.
【详解】
由数轴可知:a<0<b,a<-1,0 所以,A.a+b<0,故原选项错误;
B. ab<0,故原选项错误;
C.a-b<0,故原选项错误;
D.,正确.
故选D.
【点睛】
本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a,b的大小关系.
5、B
【解析】
解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:.故选B.
点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.
6、C
【解析】
试题分析:原式去括号可得b-c+d+a=(a+b)-(c-d)=4-(-3)=1.
故选A.
考点:代数式的求值;整体思想.
7、B
【解析】
方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.
【详解】
方程两边同时乘以(x-2),得
1﹣3(x﹣2)=﹣4,
故选B.
【点睛】
本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.
8、B
【解析】
根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论.
【详解】
∵S甲2>S乙2,
∴成绩较为稳定的是乙班。
故选:B.
【点睛】
本题考查了方差,解题的关键是掌握方差的概念进行解答.
9、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
10、D
【解析】
试题分析:根据中位数和众数的定义分别进行解答即可.把这组数据从小到大排列:3,6,7,7,8,8,8,
8出现了3次,出现的次数最多,则众数是8;最中间的数是7,则这组数据的中位数是7
考点:(1)众数;(2)中位数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、3.05×105
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
故答案为:.
【点睛】
本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.
12、
【解析】
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依据△A'CF∽△BCA,可得,即=,进而得到BE=.
【详解】
解:如图,
由折叠可得,∠AFE=∠A'FE,
∵A'F∥AB,
∴∠AEF=∠A'FE,
∴∠AEF=∠AFE,
∴AE=AF,
由折叠可得,AF=A'F,
设BE=x,则AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,
∵A'F∥AB,
∴△A'CF∽△BCA,
∴,即=,
解得x=,
∴BE=,
故答案为:.
【点睛】
本题主要考查了折叠问题以及相似三角形的判定与性质的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.
13、1a1.
【解析】
结合图形,发现:阴影部分的面积=大正方形的面积的+小正方形的面积-直角三角形的面积.
【详解】
阴影部分的面积=大正方形的面积+小正方形的面积-直角三角形的面积
=(1a)1+a1-×1a×3a
=4a1+a1-3a1
=1a1.
故答案为:1a1.
【点睛】
此题考查了整式的混合运算,关键是列出求阴影部分面积的式子.
14、85
【解析】
根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
【详解】
解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
中位数为中间两数84和86的平均数,
∴这六位同学成绩的中位数是85.
【点睛】
本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.
15、
【解析】
由△BOF≌△AOE,得到BE=FC=2,在直角△BEF中,从而求得EF的值.
【详解】
∵正方形ABCD中,OB=OC,∠BOC=∠EOF=90°,
∴∠EOB=∠FOC,
在△BOE和△COF中,,
∴△BOE≌△COF(ASA)
∴BE=FC=2,
同理BF=AE=3,
在Rt△BEF中,BF=3,BE=2,
∴EF==.
故答案为
【点睛】
本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.
16、
【解析】
一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.
【详解】
∵不透明袋子中装有7个球,其中有2个红球、2个绿球和3个黑球,
∴从袋子中随机取出1个球,则它是黑球的概率是:
故答案为:.
【点睛】
本题主要考查概率的求法与运用,解决本题的关键是要熟练掌握概率的定义和求概率的公式.
三、解答题(共8题,共72分)
17、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
【解析】
(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
(2)当直线l经过点D时,设l的解析式代入数值解出即可
【详解】
(1)此时点A在直线l上.
∵BC=AB=2,点O为BC中点,
∴点B(-1,0),A(-1,2).
把点A的横坐标x=-1代入解析式y=2x+4,得
y=2,等于点A的纵坐标2,
∴此时点A在直线l上.
(2)由题意可得,点D(1,2),及点M(-2,0),
当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
∴解得
由(1)知,当直线l经过点A时,t=4.
∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.
【点睛】
本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
18、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】
(1)可用待定系数法来确定y与x之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w与x的函数关系式,进而利用所获利润等于3600元时,对应x的值,根据增减性,求出x的取值范围.
【详解】
(1)由题意得: .
故y与x之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x<50时,w随x的增大而增大,
∴x=46时,w大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x1=55,x2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
19、 (1)证明见解析;(2)
【解析】
分析:
(1)如下图,连接OC,由已知易得OC⊥DE,结合BD⊥DE可得OC∥BD,从而可得∠1=∠2,结合由OB=OC所得的∠1=∠3,即可得到∠2=∠3,从而可得BC平分∠DBA;
(2)由OC∥BD可得△EBD∽△EOC和△DBM∽△OCM,由根据相似三角形的性质可得得,由,设EA=2k,AO=3k可得OC=OA=OB=3k,由此即可得到.
详解:
(1)证明:连结OC,
∵DE与⊙O相切于点C,
∴OC⊥DE.
∵BD⊥DE,
∴OC∥BD. .
∴∠1=∠2,
∵OB=OC,
∴∠1=∠3,
∴∠2=∠3,
即BC平分∠DBA. .
(2)∵OC∥BD,
∴△EBD∽△EOC,△DBM∽△OCM,.
∴,
∴,
∵,设EA=2k,AO=3k,
∴OC=OA=OB=3k.
∴.
点睛:(1)作出如图所示的辅助线,由“切线的性质”得到OC⊥DE结合BD⊥DE得到OC∥BD是解答第1小题的关键;(2)解答第2小题的关键是由OC∥BD得到△EBD∽△EOC和△DBM∽△OCM这样利用相似三角形的性质结合已知条件即可求得所求值了.
20、x=-4是方程的解
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
∴x=-4,
当x=-4时,
∴x=-4是方程的解
【点睛】
本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
21、(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;
(2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
【解析】
分析:(1)根据题意列出方程组即可;
(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.
详解:(1)设每台型,型挖掘机一小时分别挖土立方米和立方米,根据题意,得
解得
所以,每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米.
(2)设型挖掘机有台,总费用为元,则型挖据机有台.根据题意,得
,
因为,解得,
又因为,解得,所以.
所以,共有三种调配方案.
方案一:当时, ,即型挖据机7台,型挖掘机5台;
方案二:当时, ,即型挖掘机8台,型挖掘机4台;
方案三:当时, ,即型挖掘机9台,型挖掘机3台.
,由一次函数的性质可知,随的减小而减小,
当时,,
此时型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.
22、A、B两种型号的空调购买价分别为2120元、2320元
【解析】
试题分析:根据题意,设出A、B两种型号的空调购买价分别为x元、y元,然后根据“已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元”,列出方程求解即可.
试题解析:设A、B两种型号的空调购买价分别为x元、y元,依题意得:
解得:
答:A、B两种型号的空调购买价分别为2120元、2320元
23、(1);(2)规则是公平的;
【解析】
试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
试题解析:(1)画树状图为:
共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
所以P(小王)=;
(2)不公平,理由如下:
∵P(小王)=,P(小李)=,≠,
∴规则不公平.
点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
24、(1)12米;(2)(2+8)米
【解析】
(1)设DE=x,先证明△ACE是直角三角形,∠CAE=60°,∠AEC=30°,得到AE=16,根据EF=8求出x的值得到答案;
(2)延长NM交DB延长线于点P,先分别求出PB、CD得到PD,利用∠NDP=45°得到NP,即可求出MN.
【详解】
(1)如图,设DE=x,
∵AB=DF=4,∠ACB=30°,
∴AC=8,
∵∠ECD=60°,
∴△ACE是直角三角形,
∵AF∥BD,
∴∠CAF=30°,
∴∠CAE=60°,∠AEC=30°,
∴AE=16,
∴Rt△AEF中,EF=8,
即x﹣4=8,
解得x=12,
∴树DE的高度为12米;
(2)延长NM交DB延长线于点P,则AM=BP=6,
由(1)知CD=CE=×AC=4,BC=4,
∴PD=BP+BC+CD=6+4+4=6+8,
∵∠NDP=45°,且∠NPD=90°,
∴NP=PD=6+8,
∴NM=NP﹣MP=6+8﹣4=2+8,
∴食堂MN的高度为(2+8)米.
【点睛】
此题是解直角三角形的实际应用,考查直角三角形的性质,30°角所对的直角边等于斜边的一半,锐角三角函数,将已知的线段及角放在相应的直角三角形中利用三角函数解题,由此做相应的辅助线是解题的关键.
相关试卷
这是一份2024年广东省深圳市罗湖区翠园东晓中学中考数学模拟试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年广东省深圳市罗湖区翠园中学中考模拟数学试题(原卷版+解析版),文件包含2024年广东省深圳市罗湖区翠园中学中考模拟数学试题原卷版docx、2024年广东省深圳市罗湖区翠园中学中考模拟数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份广东省深圳市文锦中学2021-2022学年中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。